[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2123)

1317

B. Tech 1st Semester Examination Basic Mechanical Engineering (O.S.) ME-1003

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question from each section A, B, C and D. The section E is compulsory with short answer type and all parts of this section are to be attempted. Missing data, if any, can be assumed suitably. Take r=1.4, R=0.29 KJ/kg °C, c_v=0.718

SECTION - A

- 1. (a) What do you mean by "Perpetual motion machine of first kind"? (5)
 - (b) Explain the Joule's Law. (5)
 - (c) Set up a relationships of between the two specific heats. (10)
- 2. (a) A cylinder contains 0.45 m^3 of a gas at $1 \times 10^5 \text{ N/m}^2$ and 80°C . The gas is compressed to a volume of 0.13 m^3 , the final pressure being $5 \times 10^5 \text{ N/m}^2$.

Determine:

- (i) The mass of gas;
- (ii) The value of index of 'n' for compression;
- (iii) The increase in internal energy of gas:
- (iv) The heat received or rejected by the gas during the compression. (15)

1317/1900 [P.T.O.]

2 1317

(b) Explain clearly difference between a non flow & steady flow and Closed & open systems. (5)

SECTION - B

- 3. (a) State the limitations of first law of thermodynamics. (5)
 - (b) Two Carnot engine works in series between the sources and sink temperatures of 550 K and 350 K. If both engines develop equal power determine the intermediate temperature. (15)
- 4. (a) Prove that that entropy is a 'Property' of a system. (5)
 - (b) Derive the expressions for entropy changes for a closed system in the following cases:
 - (i) Heating of a gas at constant volume;
 - (ii) Heating of a gas at constant pressure;
 - (iii) For isothermal process. (15)

SECTION - C

- 5. An axial pull of 35000 N is acting on a bar consisting of three lengths as shown in Fig. If the Young's modulus $2.1 \times 10^5 \text{ N/mm}^2$, determine :
 - (i) stresses in each section and
 - (ii) Total extension of the bar. (20)

6. Draw the S.F. and B.M. diagrams of a simply supported beam of length uniformly distributed loads as shown in figure. (20)

3

SECTION - D

7. Prove that relation:

$$\frac{M}{I} = \frac{\sigma}{v} = \frac{E}{R}$$

Where M = Bending Moment, y=distance from neutral axis

$$σ$$
=Bending Stress, I = M.O.I., E = Young's Modulus and R = Radius of Curvature (20)

8. Two shafts of the same material and of same lengths are subjected to the torque, if the first shaft is of a solid circular section and the second shaft is of hollow section, whose internal diameter is 2/3 of the outside diameter and the maximum stress developed in each shaft is the same, compare the weights of the shafts. (20)

SECTION - E

- 9. (a) Define a process.
 - (b) Write down steady flow energy equation for a compressor.

[P.T.O.]

4 1317

- (c) Differentiate between the adiabatic and polytrophic processes.
- (d) How the efficiency of Carnot engine can be increased?
- (e) What is the significance of entropy?
- (f) What is the significance of Young's modulus?
- (g) What is the uniformly distributed and uniformly varying load?
- (h) What are the different types of beams?
- (i) Define the pure bending.
- (j) What do you mean by section of modulus? (2×10=20)