[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2123)

1367

B. Tech 3rd Semester Examination Circuit Theory (O.S.) EE(ID)-3001

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, by selecting atleast one question from each of sections A, B, C and D, question no. 9 of section E, which is compulsory. All questions carry equal marks.

SECTION - A

- (a) A half cycle sine wave function is given by
 v(t)=sin wt. Determine its Laplace transform.
 - (b) In Fig. 1, the battery voltage is applied for a steady state period. Obtain the complete expression for the circuit after closing the switch K. (20)

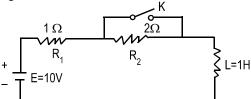
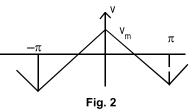
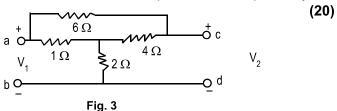
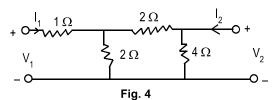



Fig. 1

- 2. A voltage wave is shown in Fig. 2.
 - (a) Find exponential Fourier series for the wave.

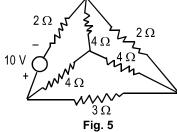

1367/1100 [P.T.O.]

2 1367


- (b) If this wave is applied to a series combination of resistance (R) and capacitor (C) find current.
- (c) Find power and power factor of the circuit. (20)

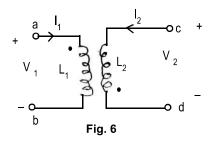
SECTION - B

3. Obtain I and II equivalent circuits for the network of Fig. 3 by using impedance and admittance parameters respectively.



- 4. (a) Derive the condition of reciprocity and symmetry in h-parameter network.
 - (b) Find the y-parameters for the network of Fig. 4. (20)

SECTION - C


5. Fig. 5 represents a resistive network. Determine the numbers of branches, number of nodes and links. Write down the incidence matrix for the given network. Also develop the network equilibrium equation. (20)

3 1367

6. (a) Write the loop equations in time domain and s domain, if $L_1 = L_2 = 2H$, $V_1 = 5$ Sin wt, $V_2 = 5$ sin (wt+30°)

M=10H for the circuit of Fig. 6.

(b) For an ideal transforming find the input impedance. Assume load impedance to be Z_2 . (20)

SECTION - D

7. Check whether the following function is Hurwitz

(a)
$$s^5 + 14s^4 + 48s^3 + 200s^2 + 500s + 200 = 0$$

(b) Represent $z(s) = \frac{s^4 + 7s^2 + 9}{s(s^2 + 4)}$ in the form of Cauer LC network (20)

8. (a) Driving point impedance of an LC network is given by

$$z(s) = \frac{10s^4 + 12s^2 + 1}{2s(s^2 + 1)}$$

determine the first foster form.

(b) Find the second foster form of the admittance function given by

$$y(s) = \frac{s(s^2 + 9)}{10(s^2 + 4)(s^2 + 25)}$$
 (20)

[P.T.O.]

4 1367

SECTION - E (Compulsory)

- 9. (a) Find the Laplace transform of shifted step function.
 - (b) Describe z and y parameters.
 - (c) What is non-linear circuit? Can Ohm's law be applied to a non-linear circuit?
 - (d) How can you obtain a fundamental Tie set matrix?
 - (e) What is the importance of poles and zeros?
 - (f) What is initial and final value theorems?
 - (g) What is waveform symmetry?
 - (h) What are properties of a transfer function?
 - (i) Define co-efficient of coupling.
 - (j) List four important properties of a driving point impedance function of an LC network. (10×2=20)