[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2123)

1338

B. Tech 3rd Semester Examination Digital Electronics (N.S.)

EC-211

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, select one question from each sections A, B, C and D. Section E is compulsory.

SECTION - A

- (a) A transmitter uses a single error correcting code for the message using even parity. The message received at the receiving end is 1110101. Check and correct the error. Assume the parity code is even.
 - (b) Convert the following numbers into decimal:
 - (i) 100100111000.0111 (BCD) (ii) (11001101.111)₂
 - (iii) $(CF.5)_{16}$ (iv) $(234)_5$ (4)
 - (c) Simplify the expression: $Y(ABCD) = (\overline{A} + B) (A + B + D) \overline{D}$ (4)
 - (d) Perform the following subtraction using 2's compliment method:
 - (i) (0011.1001)-(0001.1110) (ii) $(3F)_{16}-(5C)_{16}$ (4)
 - (e) Represent the number (+46.5)₁₀ as a floating point binary number with 24 bits. The normalized fraction mantissa has 16 bits and exponent has 8 bits. (4)
- 2. (a) Determine the single error correcting code for the message code (11010). Assume parity code is odd. (4)

1338/2200 [P.T.O.]

Reduce the following function using K-map technique and

(iv) Figure of merit

(5)

(5)

3.

4. (a)

(iii) Noise margin

implement using NAND gates:

 $Y(A,B,C,D) = \overline{A}\overline{B}D + AB\overline{C}\overline{D} + BCD$

(D)	Quine-McCluskey method.	sing	
	$Y(A,B,C,D) = \Sigma m(1,3,5,10,11,12,13,14,15)$	(5)	
(c)	Simplify the following functions:		
	$Y(A,B,C,D) = \Sigma m(1,3,7,11,15) + d(0,2,4)$	(5)	
(d)	Explain interfacing of a TTL gate driving CMOS gates vice versa.	and (5)	
	SECTION - C		
(a)	Implement a full adder using two 4:1 multiplexers.	(5)	
(b)	What is race around condition in J-K flip-flop? How it can be eliminated. (5)		
(c)	Explain the working of asynchronous up-down counter.		
(d)	Evalois the weaking of hidinational chiff register	(5)	
(d)	Explain the working of bidirectional shift register.	(5)	
(a)	Implement the following functions using 3-to-8-decoder:	ine	
	(i) $Y_0(A,B,C) = \Sigma m(0,1,5,6)$		
	(ii) $Y_1(A,B,C) = \Sigma m(0,4,5,7)$	(5)	
(b)	Draw the logic circuit of J-K flip-flop and T flip-flop.	(5)	
(c)	Explain the working of 4-bit synchronous counter. (5)		
(d)	What do mean by register? Also explain its different type	es. (5)	
	SECTION - D		
(a)	What is the need of A/D and D/A converter? List all D/A converters and explain. (10)		
(b)	Explain the following:		
	(i) PLA (ii) Sequential memories	10)	
(a)	Give different specifications of A/D and D/A converted		
		10)	
	[P.T.	0.]	

5.

6.

7.

8.

(10)

		SECTION - E
9.	(a)	Divide the binary number 110111 by 11. (1
	(b)	Find decimal equivalent of $(01010011)_2$ binary number. (1
	(c)	Write the dual of the Boolean theorem $A^*(B+C) = AB+AC$
	(d)	A full adder can be implemented with half adders and Ol gates. How many half adders and OR gates are require for a 4-bit parallel full adder without any initial carry? (1
	(e)	How many flip-flops required to build Mod-15 counter?
		(1
	(f)	The Q output of J-K flip-flop is 1. The output does no change when a clock pulse is applied. What will be the input J and K? (1)
	(g)	Write the minimum number of NAND gates required to
		implement $A + A\overline{B} + A\overline{B}C$ (1
	(h)	Why does the ECL family have the lowest propagation delay of all logic families? (2
	(i)	Encode the $(1011)_2$ binary word into 7-bit even parit hamming code. (2)
	(j)	What are the different types of hazards in asynchronou circuits? (2
	(k)	Explain the basic flip-flop circuit for R-S using NOR gates (2
	(I)	What is the difference between truth table and excitation table? (2)
	(m)	What do you mean by sign-magnitude representation?
		(2
	(n)	Determine the value of base $(193)_x = (623)_8$ (1

(b) What do you understand by semiconductor memories?

Give its classification and organisation.