[Total No. of Questions - 9] [Total No. of Printed Pages - 2] (2123)

1497

MCA 1st Semester Examination Digital Organization (O.S.)

MCA-102

Time: 3 Hours Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question from each section. Question 9 is compulsory.

SECTION - A

- 1. (a) What are the alpha numeric codes? Explain.
 - (b) $(AA1)_{16}$ to $(-----)_{10}$, $(-----)_8$
 - (c) $(63718)_{10}$ to $(-----)_2$, $(-----)_8$, $(-----)_{16}$
 - (d) $(0.62652)_{10}$ to $(-----)_2$, $(-----)_8$ (12)
- 2. (a) 278+978 using BCD addition.
 - (b) 110101 110111 using 1's complement.
 - (c) 52.79 78.58 using 9's complement.
 - (d) $(57)_8 + (65)_8$ using octal addition. (12)

SECTION - B

- 3. (a) Explain the working of BJT as a switch. Give Details of saturated & non-saturated logic. (12)
- 4. Draw & Explain the characteristics of ECL & CMOS. (12)

1497/20 [P.T.O.]

2 1497

SECTION - C

- 5. Design all the basic gates using universal gates. Give four laws of Boolean algebra. (12)
- 6. Minimize the following using k-map & give your result in both SOP & POS forms.

$$F(w, x, y, z) = \Sigma(1, 4, 6, 7, 8, 9, 10, 11, 15)$$
 (12)

SECTION - D

- 7. Explain the working of BCD adder with neat & clean diagram. (12)
- 8. Design the JK flip flop using T-flip flop. Give applications of T-flipflop. (12)

SECTION - E

- 9. Write Technical note on the following:
 - (a) Successive approximation method.
 - (b) Encoders.
 - (c) Depletion region in P-N Junction diode. (3×4=12)