[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2123)

1346

B. Tech 3rd Semester Examination Discrete Mathematics & Logic Design (N.S.) NS-206-A

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Candidate are required to attempt five questions in all selecting one question from each of the section A, B, C & D and all subpart of Section E. Use of non-programmable calculators are allowed.

SECTION - A

- 1. (a) State and prove De Morgan's Laws. (4)
 - (b) What is Venn Diagrams? Draw the Venn Diagrams for various set operations. (10)
 - (c) Let A = {4, 6, 8, 10} and
 R = {(4, 4), (4, 10), (6, 6), (6,8), (8, 10)} is a relation on set
 A. Determine transitive closure of R.
- 2. (a) Prove that if $f: x \to y$ and $g: y \to z$ be two one-to-one onto function then gof is also one-to-one onto function. (8)
 - (b) Consider the set $A=\{4, 5, 6, 7\}$. Let R be the relation \leq on A. Draw the directed graph and Hasse diagram of R. (8)
 - (c) Prove that if L be a lattice then $a \land b = 1$, if and only if $A \lor b = b$. (4)

1346/1000 [P.T.O.]

2 1346

SECTION - B

- 3. (a) What is proposition, combination of propositions and fundamental equivalence of propositions? Discuss with help of examples. (10)
 - (b) Prove that the argument $(p \land q) \rightarrow r$, $p \rightarrow q/-p \rightarrow ((p \land q) \land r)$ is valid without using truth table and also using truth table. (10)
- 4. (a) Prove that the number of different permutations of n distinct objects taken r at a time, r≤4 is given by

$${}^{n}P_{r} = \frac{n!}{(n-r)!} = n(n-1)(n-2)....(n-r+1)$$
 (6)

- (b) Determine the value of the followings:
 - (i) ${}^{4}P_{2}$ (ii) ${}^{9}P_{3}$ (iii) ${}^{52}P_{4}$ (6)
- (c) What is recurrence relation? Find the particular solution of the difference equation

$$a_{r+2} - 3a_{r+1} + 2a_r = Z^r$$
, where z is some constant. (8)

SECTION - C

- 5. (a) What is binary operations? Discuss about properties of binary operations using suitable examples. (10)
 - (b) let (A,*) be semi-group. Show that for a, b, c in A, if a*c=c*a and b*c=c*b, then (a*b)*c=c*(a*b).
 - (c) Show that the identity element in a group is unique. (4)
- 6. (a) What is group? Discuss various type of group using suitable examples. (10)
 - (b) What is Ring and its types? Also consider a ring (R, +,*) defined by a*a=a. Determine whether the ring is commutative or not. (10)

SECTION - D			
7.	(a)	Discuss about graph and its types.	(10)
	(b)	Let $G = \{\{a, b, c, d\}\}$ $\{(a, b), (b, c), (c, c), (d, d), (d, d), (d, d)\}$ for K_G .	,
8.	(a)	Discuss about various type of trees with help of exan Draw binary tree of 5 nodes with one leaf.	nples. (10)
	(b)	Explain tree traversing of binary tree using example	es. (10)
SECTION - E			
9.	Define & Explain following terms in brief:		
	(a)	Isomorphic Lattice	(3)
	(b)	Cosets	(3)
	(c)	Monoid	(2)
	(d)	Total solution	(2)
	(e)	Composition of functions	(2)
	(f)	Shortest path	(2)
	(g)	Universal quantifier	(2)
	(h)	Rooted tree	(2)
	(i)	Tautology.	(2)