[Total No. of Questions - 5] [Total No. of Printed Pages - 3] (2123)

1403

B. Tech 5th Semester Examination Electromagnetic Field Theory (O.S.)

EC-5002

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Candidates are required to attempt five questions in all. Selecting one question from each of the sections A, B, C & D. Section E is compulsory.

SECTION - A

1. Check the divergence theorem using the function $\vec{V} = y^2 \hat{i} + (2xy + z^2)j + (2yz)\hat{k}$ and the unit cube situated at the origin. (20)

Test Stoke's theorem for the function $\vec{V}=(2xz+3yz)\ \hat{j}+(4yz^2)\ \hat{k}$, using the square surface shown in figure. (20)

1403/1700 [P.T.O.]

2 1403

SECTION - B

2. In free space, Let $Q_1 = 10$ nC be at $P_1(0, -4, 0)$ and $Q_2 = 20$ nC be at $P_2(0, 0, 4)$. (i) Find \vec{E} at the origin (ii) where should a 30 nC point charge be located so that $\vec{E} = 0$ at the origin? (10×2=20)

OR

- (a) State and explain the ampere's circuital law for steady currents. Mention its applications and limitations. (10)
- (b) Find the magnetic field intensity at centre of a square loop conductor of side L carrying a current of I amps. (10)

SECTION - C

- 3. (a) State the maxwell's correction to the Ampere's law for the steady currents and derive this correction from the equation of continuity. (10)
 - (b) Using the Gauss law, ohm law and equation of continuity, show that the charge density ρ that existed within a conductor decreases to 1/e times its initial value in a time ϵ/σ . What is the value of this time for copper? (10)

OR

- (a) Differentiate the Poynting theorem from the complex Poynting theorem. Give a proof for the complex Poynting theorem. (10)
- (b) A 50V voltage generator at 20 MHz is connected to the plates of an air dielectric parallel plate capacitor with plate area 2.8 cm² and separation distance 0.2 mm. Find the maximum value of displacement current density and displacement current. (10)

SECTION - D

4. (a) Derive the transmission line equations in time domain and phasor domain. (10)

3 1403

(b) A transmission line of length 70 m is terminated in a impedance of $Z_r = 125 + j$ 48. If the frequency is 3 MHz and the characteristics impedance is 230 Ω , find the sending impedance. (10)

OR

- (a) Derive an expression for the input impedance of a lossless line which is terminated by (i) a load Z_L (ii) an open circuit. (10)
- (b) A telephone line has R = 10Ω /km, L = 0.0037 H/km, C = 0.0083μ F/km and G = $0.4 \times 10^{-6} \ \mho$ /km. Determine Z₀, α and β at 1 KHz. (10)

SECTION - E

- 5. (i) Write down the relation for spherical to cylindrical transformation.
 - (ii) Write the expression for divergence in spherical coordinates.
 - (iii) Define surface charge density.
 - (iv) What is electric flux?
 - (v) Write the relation of energy density in electrostatic field \vec{E} .
 - (vi) Find the capacitance between two concentric spherical shells.
 - (vii) Write the expression for energy stored in the magnetic field.
 - (viii) Write the Ampere's circuital law in integral form.
 - (ix) What is the Faraday's law of induction?
 - (x) Define the standing wave ratio. (2×10=20)