[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2123)

1301

B. Tech 1st Semester Examination Engineering Mathematics-I (N.S.)

NS-101

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question from each section A, B, C & D of the question paper and all the subparts of the question in section E.

SECTION - A

- 1. (a) For what values of k the equations x + y + z = 1, 2x + y + 4z = k, $4x + y + 10z = k^2$ have a solution and solve them completely in each case.
 - (b) Find the characteristic values and characteristic vectors

of
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 (10+10=20)

- 2. (a) Define Skew Hermitian Matrix and show that the eigen values of skew-hermitian matrix is either zero or purely imaginary.
 - (b) Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 2yz + 4zx 4xy$ to a canonical form. Also write the model matrix and nature of the quadratic form. (10+10=20)

1301/5500 [P.T.O.]

SECTION - B

- 3. (a) If $u = log(x^3 + y^3 + z^3 3xyz)$, then show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x + y + z)^2}.$
 - (b) Examine $f(x, y) = x^3 + y^3 3axy$ for maximum and minimum values. (10+10=20)
- 4. (a) If $z = \sin^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$ then find the value of $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2}.$
 - (b) Find the point upon the plane ax + by + cz = p at which the function $f = x^2 + y^2 + z^2$ has a minimum value. Also find this minimum value. (10+10=20)

SECTION - C

5. (a) Evaluate the following integral by changing the order of integration

$$\int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx.$$

- (b) Find, by triple integration, the volume bounded above, by the sphere $x^2 + y^2 + z^2 = 2a^2$ and bounded below by the paraboloid $az = x^2 + y^2$. (10+10=20)
- 6. (a) Using the concept of double integrals, evaluate $\iint_R (x+y)^2 \, dx dy, \text{ where R is the region bounded by }$ parallelogram x+y=0, x+y=2, 3x-2y=0, 3x-2y=3.

(b) Evaluate the following integral by changing to spherical polar coordinates:

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{1}{\sqrt{1-x^2-y^2-z^2}} dz dy dx.$$
 (10+10=20)

SECTION - D

- 7. (a) Separate real and imaginary parts of $\sin^{-1}(\cos \theta + i \sin \theta)$, where θ is a positive acute angle.
 - (b) Sum the series $\cos\alpha + x\cos(\alpha + \beta) + \frac{x^2}{2!}\cos(\alpha + 2\beta) + ...\infty$ (10+10=20)
- 8. (a) If $\tan (\theta + \phi) = e^{i\alpha}$, show that $\theta = \left(n + \frac{1}{2}\right) \frac{\pi}{2} \text{ and } \phi = \frac{1}{2} \log \tan \left(\frac{\pi}{4} + \frac{\alpha}{2}\right).$
 - (b) Use De Moivre's theorem to solve the equation $x^4 x^3 + x^2 x + 1 = 0$. (10+10=20)

SECTION - E

- 9. (a) State and prove Euler's theorem for homogenous function.
 - (b) Separate $log(I + i tan \alpha)$ into real and imaginary parts.
 - (c) If $x^2 + y^2 + 3axy = c$, Find $\frac{dy}{dx}$.
 - (d) Use Maclaruin series to prove $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$
 - (e) Show that $\lim_{\substack{x\to 0\\y\to 0}} \frac{y^2-x^2}{y^2+x^2}$ does not exist.

[P.T.O.]

4 1301

- (f) Find the eigen values of the matrix $A = \begin{bmatrix} 1+i & -6 \\ 8 & 3-5i \end{bmatrix}$.
- (g) Define linear dependent and linear independent vectors.
- (h) If $x = r \cos\theta$, $y = r \sin\theta$, then verify that $\frac{\partial(x,y)}{\partial(r,\theta)} \cdot \frac{\partial(r,\theta)}{\partial x,y} = 1$
- (i) Evaluate the integral $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$.
- (j) Discuss the C+iS method for summation of a sine and cosine series. (10×2=20)