[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2123)

1548

B. Pharmacy 1st Semester Examination Mathematics-I (O.S.)

HBP-103

Time: 3 Hours Max. Marks: 80

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five question in all, selecting one question from each sections A, B, C and D. Section E is compulsory.

SECTION - A

- 1. (a) Solve $\sqrt{x+5} + \sqrt{x+15} = \sqrt{6x+40}$
 - (b) Solve by Cramer's Rule the following system of linear equations

$$x+2z=7$$
; $x+y+z=6$ and $3x+y+z=12$

(c) Find x, y if

$$3\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} - 2\begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} x & -4 \\ 3 & y \end{bmatrix} = 0$$
 (6+5+5=16)

2. (a) Find the adjoint of the matrix

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

(b) Find mean, mode and median of the data

1548/400 [P.T.O.]

(c) Using properties of the determinants prove that

2

$$\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix} = 0$$
 (6+5+5=16)

SECTION - B

3. (a) Prove that

$$\frac{\sin x + \sin y}{\cos x + \cos y} = \tan \left(\frac{x + y}{2}\right)$$

(b) Prove that

$$\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ} = \frac{1}{16}$$

(c) Prove that

$$\frac{\cos(\pi+\theta)\cos(-\theta)}{\sin(\pi-\theta)\cos\left(\frac{\pi}{2}+\theta\right)} = \cot^2\theta$$
 (5+6+5=16)

- 4. (a) Evaluate cos (75°)
 - (b) Prove that

$$\sin 105^{\circ} + \cos 105^{\circ} = \frac{1}{\sqrt{2}}$$

(c) Express as a sum or difference

$$\cos\left(\frac{\pi}{4} + 20\right)\cos\left(\frac{\pi}{4} - \theta\right) \tag{5+6+5=16}$$

SECTION - C

5. (a) Find point on x-axis which is equidistant from (3, 2) and (-5, -2).

- (b) Find the value of x so that the points (3, −2); (x, 2) and (8, 8) may be collinear.
- (c) Find the locus of all points equidistant from the points (6, 1) and (0, 4). (5+6+5=16)
- 6. (a) Find the equation of the line which makes equal intercepts on the axes as passes through the point (1, 2).
 - (b) Find the equations of the sides of the triangle whose vertices are

$$(0, 5)$$
; $(-1, -2)$; and $(3, 5)$

(c) The vertices of the triangle are A(3, 4); B(-1, 2) and C(5, -4). Find the equation of the median through the vertex A.

(5+6+5=16)

SECTION - D

- 7. (a) Evaluate : $\lim_{x\to 3} \frac{x^3 27}{x^2 9}$
 - (b) Differentiate the following w.r.t. x

(i)
$$\frac{\sin^2 x}{1+\cos^2 x}$$
 (ii) $x \cot^3 x$

(c) Find
$$\frac{dy}{dx}$$
, if $y = \sin x^{\cos x}$ (5+6+5=16)

8. (a) Find $\int \sin^{-1} x \, dx$

(b) Evaluate
$$\int \frac{dx}{(x^2-4)(x+3)}$$

(c) Evaluate
$$\int x^3 \cdot \log x \, dx$$
 (5+6+5=16)

[P.T.O.]

SECTION - E

9. (a) Solve $x^3 - x = 0$

(b) Define skew symmetric matrix alongwith one example.

(c) Find mean of 1st ten natural numbers.

(d) Find $\frac{d}{dx} \left(e^{logx} \right)$

(e) Find slope of the straight line

$$\sqrt{6}x + \sqrt{3}y + 9 = 0$$

(f) Evaluate $\int \frac{\sin x}{1 + \cos x} dx$

(g) Evaluate Lt $\underset{x\to 0}{\text{Lt}} \frac{\tan 5x}{4x}$

(h) Prove that $\cos^2(\pi - \theta) + \cos^2(\frac{\pi}{2} + \theta) = 1$ (2×8=16)