Himachal Pradesh Technical University, Hamirpur (H.P.)

CURRICULUM (PCI) MASTER OF PHARMACY (M.PHARMACY)

(PHARMACEUTICAL ANALYSIS & QUALITY ASSURANCE (PA&QA))

Teaching and Evaluation Scheme

SEMESTER- I (M. Pharmacy-Pharmaceutical Analysis & Quality Assurance)

S.	Cat.	Paper	Subject	L	T	P/D	Credits		Evaluation			n Scheme		
N.		Code						Inter Asse CT	rnal ssmer TA	nt Tota l	ESE	Subject Total		
	Theo	ry:												
1	PC	MPAQA 101T	Modern Pharmaceutical Analytical Techniques	4	0	0	4	15	10	25	75	100		
2	PC	MPAQA 102T	Advanced Pharmaceutical Analysis And Quality Management	4	0	0	4	15	10	25	75	100		
3	PC	MPAQA 103T	Quality Control And Quality Assurance	4	0	0	4	15	10	25	75	100		
4	PC	MPAQA 104T	Herbal And Cosmetic Analysis	4	0	0	4	15	10	25	75	100		
		Labs:	1		1			1	1		1			
1	PC	MPAQA 105P	Pharmaceutical Analysis And Quality Assurance Practicals-I	-	-	12	6	30	20	50	100	150		
			Seminar/Assignment	-	7	-	4	-	-	-	-	100		
Total				16	7	12	26							
	Total work Load=35							Total Credit = 26						

Teaching and Evaluation Scheme

SEMESTER- II (M. Pharmacy-Pharmaceutical Analysis & Quality Assurance)

S.	Cat.	Paper	Subject	L	T	P/D	Credits		Eva	luatio	n Sche	me
N.		Code						Inter Asse	rnal ssmer	nt	ESE	Subject Total
								CT	TA	Tota		
	Theo	rv:								l		
1	PC	MPAQA 201T	Advanced Instrumental Analysis	4	0	0	4	15	10	25	75	100
2	PC	MPAQA 202T	Modern Bio-Analytical Techniques	4	0	0	4	15	10	25	75	100
3	PC	MPAQA 203T	Pharmaceutical Validation	4	0	0	4	15	10	25	75	100
4	PC	MPAQA 204T	Pharmaceutical Manufacturing Technology	4	0	0	4	15	10	25	75	100
		Labs:					•			•		
1	PC	MPAQA 205P	Pharmaceutical Analysis And Quality Assurance – Practicals	-	-	12	6	30	20	50	100	150
			Seminar/Assignment	-	7	-	4	-	-	-	-	100
Total				16	7	12	26					650

III Semester -Course of study for M. Pharm. (Common for All Specializations)

S.	Catego	Paper Code	Subject	L	T	P/D	Credits	Evaluatio			on Scheme		
N.	ry	Code						Inter Asse	nal ssmei	nt	ESE	Subject Total	
								CT	TA	Tota l			
	Theory	:											
1		MRM 301T	Research Methodology and Biostatistics*	4	-	-	4	15	10	25	75	100	
2			Journal club	1	-	-	1	-	-	25	-	25	
3			Discussion / Presentation (Proposal Presentation)	2	-	-	2	-	-	50	-	50	
4			Research Work	28	-	-	14	-	-	-	350	350	
Total				35			21	-	-			525	
			Total Credit = 21										

^{*} Non University Exam

Course of study for M. Pharm. IV Semester (Common for All Specializations)

S.	Catego	Paper Code	Subject	L	T	P/D	Credits		Evaluatio		n Scheme		
N.	ry	Code						Internal Assessment		ESE	Subject Total		
								CT	TA	Tota l			
	Theory												
2			Journal club	1	-	-	1	-	-	25	-	25	
3			Discussion / Presentation (Proposal Presentation)	3	-	-	3	-	-	75	-	75	
4			Research Work	31	-	-	16	-	-	-	400	400	
Total			•	35	-	-	20	-	-	-	-	-	
			Total work Load=3	5				To	otal (redit :	= 20		
	* NT TT	• • •											

^{*} Non University Exam

Semester Wise Credit Distribution

Semester	Credit Points
I	26
П	26
III	21
IV	20
Co-curricular Activities (Attending Conference, Scientific Presentations and Other Scholarly Activities)	Minimum=02 Maximum=07*
Total Credit Points	Minimum=95 Maximum=100*

^{*}Credit Points for Co-curricular Activities

Dean
H.P. Technical University
Hamirpur - 177001

PHARMACEUTICAL ANALYSIS & QUALITY ASSURANCE

MPAQA 101T. MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES (Common for All PG Pharmacy Courses)

Teaching and Examination Scheme:

Teac	hing Scl	heme	Credits		Marks	Duration of End Semester	
L	T	P	С	Sessional	End Semester	Total	Examination
					Exam		
4	0	0	4	25	75	100	3 hours

Scope: This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives: After completion of course student is able to know,

- > Chemicals and Excipients
- ➤ The analysis of various drugs in single and combination dosage forms
- > Theoretical and practical skills of the instruments

UNIT		CONTENT	No. of						
			Hrs.						
I	a.	UV-Visible spectroscopy: Introduction, Theory, Laws, Instrumentation							
		associated with UV-Visible spectroscopy, Choice of solvents and solvent	11						
		effect and Applications of UV Visible spectroscopy.							
	b.	IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling,							
		Instrumentation of Dispersive and Fourier - Transform IR Spectrometer,							
	Factors affecting vibrational frequencies and Applications of IR spectroscopy								
	c.	Spectroflourimetry: Theory of Fluorescence, Factors affecting fluorescence,							
		Quenchers, Instrumentation and Applications of fluorescence							
		spectrophotometer.							
	d.	Flame emission spectroscopy and Atomic absorption spectroscopy:							
		Principle, Instrumentation, Interferences and Applications.							
II	NI	MR spectroscopy: Quantum numbers and their role in NMR, Principle,							
	Ins	strumentation, Solvent requirement in NMR, Relaxation process, NMR signals	11						
	in	various compounds, Chemical shift, Factors influencing chemical shift, Spin-							

	Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief	
	outline of principles of FT-NMR and ¹³ C NMR. Applications of NMR	
	spectroscopy.	
III	Mass Spectroscopy: Principle, Theory, Instrumentation of Mass Spectroscopy,	
	Different types of ionization like electron impact, chemical, field, FAB and	11
	MALDI, APCI, ESI, APPI Analyzers of Quadrupole and Time of Flight, Mass	
	fragmentation and its rules, Meta stable ions, Isotopic peaks and Applications of	
	Mass spectroscopy	
IV	Chromatography: Principle, apparatus, instrumentation, chromatographic	
	parameters, factors affecting resolution and applications of the following:	11
	a) Paper chromatography b) Thin Layer chromatography	
	c) Ion exchange chromatography d) Column chromatography	
	e) Gas chromatography f) High Performance Liquid chromatography	
	g) Affinity chromatography	
V	a. Electrophoresis: Principle, Instrumentation, Working conditions, factors	16
	affecting separation and applications of the following:	
	i) Paper electrophoresis ii) Gel electrophoresis iii) Capillary electrophoresis	
	iv) Zone electrophoresis v) Moving boundary electrophoresis vi) Iso electric	
	focusing	
	b. X ray Crystallography: Production of X rays, Different X ray diffraction	
	methods, Bragg's law, Rotating crystal technique, X ray powder technique, Types	
	of crystals and applications of Xray diffraction.	
	c. Immunological assays : RIA (Radio immuno assay), ELISA, Bioluminescence	
	assays.	

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Practical Pharmaceutical Chemistry Beckett and Stenlake, Vol II, 4th edition, CBS Publishers, New Delhi, 1997.

- 5. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, Marcel Dekker Series

Dean
H.P. Technical University
Hamirpur - 177001

MPAQA 102T. ADVANCED PHARMACEUTICAL ANALYSIS AND QUALITY MANAGEMENT

Teaching and Examination Scheme:

Teac	hing Scl	heme	Credits		Marks	Duration of End Semester	
L	T	P	C	Sessional	End Semester Total		Examination
					Exam		
4	0	0	4	25	75	100	3 hours

Scope: This course is designed to impart knowledge on analysis of new drugs and dosage forms as per Regulatory requirements. To impart the knowledge concerned with quality management of process and product.

Objectives: At the completion of this subject it is expected that the student shall be able to know

- ➤ Modern Analysis method protocols
- ➤ Basic principles of Immunoassays
- ➤ The TQM aspects in a pharmaceutical industry
- ➤ To understand the scope IPQC applicable to Pharmaceutical industries

UNIT	CONTENT	No. of Hrs.							
I	Impurity profiling and degradent characterization: Method development, Stability								
	studies and concepts of validation accelerated stability testing & shelf life calculation,								
	WHO and ICH stability testing guidelines, Stability zones, steps in development,								
	practical considerations. Basics of impurity profiling and degradent characterization								
	with special emphasis. Photostability testing guidelines, ICH stability guidelines for								
	biological products, Stability testing of phytopharmaceuticals: Regulatory								
	requirements, protocols, HPTLC/HPLC finger printing, interactions and complexity.								
II	Biological tests and assays of the following: a. Adsorbed Tetanus vaccine b. Adsorbed								
	Diphtheria vaccine c. Human anti haemophilic vaccine d. Rabies vaccine e.Tetanus	10							
	Anti toxin f. Tetanus Anti serum g. Oxytocin h. Heparin sodium IP i. Antivenom.								
III	Immunoassays (IA): Basic principles, Production of antibodies, Separation of bound								
	and unbound drug, Radioimmunoassay, Optical IA, Enzyme IA, Fluoro IA,	10							
	Luminiscence IA, Quantification and applications of IA.								
IV	Pharmaceutical quality Management: Basics of Quality Management, Total Quality								

	Management (TQM), Principles of Six sigma, ISO 9001:2008, 9001:2015, ISO	12
	14001:2004, Pharmaceutical Quality Management – ICH Q10, Knowledge	
	management, Quality Metrics, Operational Excellence and Quality Management	
	Review. OSHAS guidelines, NABL certification and accreditation, CFR-21 part 11,	
	WHO-GMP requirements.	
V	Six System Inspection model: Quality Management system, Production system,	12
	Facility and Equipment system, Laboratory control system, Materials system,	
	Packaging and labeling system. Concept of self inspection. Quality systems: Change	
	Management/ Change control. Deviations, Out of Specifications (OOS), Out of Trend	
	(OOT), Complaints - evaluation and handling, Investigation and determination of root	
	cause, Corrective &Preventive Actions (CAPA), Returns and Recalls, Vendor	
	Qualification, Annual Product Reviews, Batch Review and Batch Release. Concept of	
	IPQC, area clearance/ Line clearance.	

- 1. Implementing Juran's Road Map for Quality Leadership: Benchmarks and Results, By Al Endres, Wiley, 2000
- Understanding, Managing and Implementing Quality: Frameworks, Techniques and Cases,
 By Jiju Antony; David Preece, Routledge, 2002
- 3. Organizing for High Performance: Employee Involvement, TQM, Reengineering, and Knowledge Management in the Fortune 1000: The CEO Report By Edward E. Lawler; Susan Albers Mohrman; George Benson, Jossey-Bass, 2001
- 4. Corporate Culture and the Quality Organization By James W. Fairfield-Sonn, Quorum Books, 2001
- 5. The Quality Management Sourcebook: An International Guide to Materials and Resources By Christine Avery; Diane Zabel, Routledge, 1997
- 6. The Quality Toolbox, Second Edition, Nancy R. Tague, ASQ Publications
- 7. Juran's Quality Handbook, Sixth Edition, Joseph M. Juran and Joseph A. De Feo, ASQ Publications
- 8. Root Cause Analysis, The Core of Problem Solving and Corrective Action, Duke Okes, 2009, ASQ Publications.
- 9. Pharmaceutical Analysis Higuchi, Brochmman and Hassen, 2nd Edition, Wiley Interscience Publication, 1961.

- 10. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi, 3rd Edition, CBS Publishers New Delhi, 1997.
- 11. Pharmaceutical Analysis- Modern methods J W Munson Part B, Volume 11, Marcel Dekker Series.
- 12. The Quantitative analysis of Drugs D C Carratt, 3rd edition, CBS Publishers, NewDelhi, 1964.
- 13. Indian Pharmacopoeia VolI, II & III 2007, 2010, 2014.
- 14. Methods of sampling and microbiological examination of water, first revision, BIS
- 15. Practical HPLC method development Snyder, Kirkland, Glajch, 2nd edition, John Wiley & Sons.
- 16. Analytical Profiles of drug substances Klaus Florey, Volume 1 20, Elsevier, 2005
- 17. Analytical Profiles of drug substances and Excipients Harry G Brittan, Volume 21 30, Elsevier, 2005.
- 18. The analysis of drugs in biological fluids Joseph Chamberlain, 2nd edition, CRC press, London.
- 19. ICH Guidelines for impurity profiles and stability studies.

MPAQA 103T. QUALITY CONTROL AND QUALITY ASSURANCE

Teaching and Examination Scheme:

Teac	hing Scl	neme	Credits		Marks	Duration of End Semester	
L	T	P	C	Sessional	End Semester	Total	Examination
					Exam		
4	0	0	4	25	75	100	3 hours

Scope: This course deals with the various aspects of quality control and qualityassurance aspects of pharmaceutical industries. It covers the important aspectslikecGMP, QC tests, documentation, quality certifications, GLP and regulatoryaffairs.

Objectives: At the completion of this subject it is expected that the student shall be able to know

- ➤ The cGMP aspects in a pharmaceutical industry
- > To appreciate the importance of documentation
- > To understand the scope of quality certifications applicable toPharmaceutical industries
- ➤ To understand the responsibilities of QA & QC departments

UNIT	CONTENT	No. of
		Hrs.
Ι	Concept and Evolution of Quality Control and Quality Assurance Good	
	Laboratory Practice, GMP, Overview of ICH Guidelines -QSEM, with special	12
	emphasis on Q-series guidelines. Good Laboratory Practices: Scope of GLP,	
	Definitions, Quality assurance unit, protocol for conduct of non clinical testing,	
	control on animal house, report preparation and documentation.	
II	cGMP guidelines according to schedule M, USFDA (inclusive of CDER and	
	CBER) Pharmaceutical Inspection Convention(PIC), WHO and EMEA covering:	12
	Organization and personnel responsibilities, training, hygiene and personal	
	records, drugindustry location, design, construction and plant lay out,	
	maintenance, sanitation, environmental control, utilities and maintenance of	
	sterile areas, control of contamination and Good Warehousing Practice. CPCSEA	
	guidelines.	
III	Analysis of raw materials, finished products, packaging materials, in process	
	quality control (IPQC), Developing specification (ICH Q6 and Q3)Purchase	12

	specifications and maintenance of stores for rawmaterials. In process quality										
	control and finished products quality control for following formulation in Pharma										
	industry according to Indian, US and British pharmacopoeias: tablets,										
	capsules, ointments, suppositories, creams, parenterals, ophthalmic and surgical										
	products (How to refer pharmacopoeias), Quality control test for containers,										
	closures and secondary packing materials.										
IV	Documentation in pharmaceutical industry: Three tier documentation, Policy,										
	Procedures and Work instructions, and records (Formats), Basic principles- How										
	to maintain, retention andretrieval etc. Standard operating procedures (How to										
	write), Master Formula Record, Batch Formula Record, Quality audit plan										
	andreports. Specification and test procedures, Protocols and reports. Distribution										
	records. Electronic data.										
V	Manufacturing operations and controls: Sanitation of manufacturing premises,	12									
	mix-ups and cross contamination, processing of intermediates and bulk products,										
	packaging operations, IPQC, release of finished product, process deviations,										
	charge-in of components, time limitations on production, drug product inspection,										
	expiry date calculation, calculation of yields, production record review, change										
	control, sterile products, aseptic process control, packaging.										

- 1. Quality Assurance Guide by organization of Pharmaceutical Procedures ofIndia, 3rd revised edition, Volume I & II, Mumbai, 1996.
- 2. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol.69, Marcel Dekker Series, 1995.
- 3. Quality Assurance of Pharmaceuticals- A compedium of Guide lines and Related materials Vol I & II, 2nd edition, WHO Publications, 1999.
- 4. How to Practice GMP's P P Sharma, Vandana Publications, Agra, 1991.
- 5. The International Pharmacopoeia vol I, II, III, IV & V General Methodsof Analysis and Quality specification for Pharmaceutical Substances, Excepients and Dosage forms, 3rd edition, WHO, Geneva, 2005.
- 6. Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, MarcelDekker Series, 1989.
- 7. ICH guidelines

- 8. ISO 9000 and total quality management
- 9. The drugs and cosmetics act 1940 Deshpande, Nilesh Gandhi, 4thedition, Susmit Publishers, 2006.
- 10. QA Manual D.H. Shah, 1st edition, Business Horizons, 2000.
- Good Manufacturing Practices for Pharmaceuticals a plan for total qualitycontrol Sidney
 Willig, Vol. 52, 3rd edition, Marcel Dekker Series.
- 12. Steinborn L. GMP/ISO Quality Audit Manual for Healthcare Manufacturers and Their Suppliers, Sixth Edition, (Volume 1 With Checklists and Software Package). Taylor & Francis; 2003.
- 13. Sarker DK. Quality Systems and Controls for Pharmaceuticals. John Wiley& Sons; 2008.

MPAQA 104T. HERBAL AND COSMETIC ANALYSIS

Teaching and Examination Scheme:

Teac	hing Scl	heme	Credits	Marks		Duration of End Semester	
L	T	P	C	Sessional	End Semester	Total	Examination
					Exam		
4	0	0	4	25	75	100	3 hours

Scope: This course is designed to impart knowledge on analysis of herbal products.Regulatoryrequirements, herbal drug interaction with monographs.Performance evaluation of cosmetic products is included for the betterunderstanding of the equipments used in cosmetic industries for the purpose.

Objectives: At completion of this course student shall be able to understand

- > Determination of herbal remedies and regulations
- ➤ Analysis of natural products and monographs
- > Determination of Herbal drug-drug interaction
- ➤ Principles of performance evaluation of cosmetic products.

UNIT	CONTENT	No. of
		Hrs.
I	Herbal remedies- Toxicity and Regulations: Herbals vs Conventional drugs,	
	Efficacy of herbal medicine products, Validation of Herbal Therapies,	12
	Pharmacodynamic and Pharmacokinetic issues. Herbal drug standardization:	
	WHO and AYUSH guidelines.	
II	Adulteration and Deterioration: Introduction, types of adulteration /substitution of	
	herbal drugs, Causes and Measure of adulteration, Sampling Procedures,	12
	Determination of Foreign Matter, DNA Finger printing techniques in	
	identification of drugs of natural origin, heavy metals, pesticide residues,	
	phototoxin and microbial contamination in herbal formulations. Regulatory	
	requirements for setting herbal drug industry: Global marketing management,	
	Indian and international patent law as applicable herbal drugs and natural	
	products and its protocol.	
III	Testing of natural products and drugs: Effect of herbal medicine on clinical	

	laboratory testing, Adulterant Screening using modern analytical instruments,	12							
	Regulation and dispensing of herbal drugs, Stability testing of natural products,								
	protocol. Monographs of Herbal drugs: Study of monographs of herbal drugs and								
	comparative study in IP, USP, Ayurvedic Pharmacopoeia, American herbal								
	Pharmacopoeia, British herbal Pharmacopoeia, Siddha and Unani Pharmacopoeia,								
	WHO guidelines in quality assessment of herbal drugs.								
IV	Herbal drug-drug interaction: WHO and AYUSH guidelines for safety monitoring								
	of natural medicine, Spontaneous reporting schemes for bio drug adverse	12							
	reactions, bio drug-drug and bio drug-food interactions with suitable examples.								
	Challenges in monitoring the safety of herbal medicines.								
V	. Evaluation of cosmetic products: Determination of acid value, ester value,	12							
	saponification value, iodine value, peroxide value, rancidity, moisture, ash,								
	volatile matter, heavy metals, fineness of powder, density, viscosity of cosmetic								
	raw materials and finished products. Study of quality of raw materials and general								
	methods of analysis of raw material used in cosmetic manufacture as per BIS.								
	Indian Standard specification laid down for sampling and testing of various								
	cosmetics in finished forms such as baby care products, skin care products, dental								
	products, personal hygiene preparations, lips sticks. Hair products and skin								
	creams by the Bureau Indian Standards.								

- 1. Pharmacognosy by Trease and Evans
- 2. Pharmacognosy by Kokate, Purohit and Gokhale
- 3. Quality Control Methods for Medicinal Plant, WHO, Geneva
- 4. Pharmacognosy&Pharmacobiotechnology by AshutoshKar
- 5. Essential of Pharmacognosy by Dr.S.H.Ansari
- 6. Cosmetics Formulation, Manufacturing and Quality Control, P.P.Sharma, 4th edition, Vandana Publications Pvt. Ltd., Delhi
- 7. Indian Standard specification, for raw materials, BIS, New Delhi.
- 8. Indian Standard specification for 28 finished cosmetics BIS, New Delhi
- 9. Harry's Cosmeticology 8th edition
- 10. Suppliers catalogue on specialized cosmetic excipients
- 11. Wilkinson, Moore, seventh edition, George Godwin. Poucher's Perfumes, Cosmetics and Soaps
- 12. Hilda Butler, 10th Edition, Kluwer Academic Publishers. Handbook of Cosmetic Science and Technology, 3rd Edition,

MPAQA 105P. PHARMACEUTICAL ANALYSIS AND QUALITY ASSURANCE PRACTICALS-I

Teaching and Examination Scheme:

Teac	Teaching Scheme Credits				Marks	Duration of End Semester	
L	T	P	C	Sessional	End Semester	Total	Examination
					Exam		
0	0	12	6	50	100	150	6 hours

- 1. Analysis of Pharmacopoeial compounds and their formulations by UV Visspectrophotometer
- 2. Simultaneous estimation of multi component containing formulations by UVspectrophotometry
- 3. Experiments based on HPLC
- 4. Experiments based on Gas Chromatography
- 5. Estimation of riboflavin/quinine sulphate by fluorimetry
- 6. Estimation of sodium/potassium by flame photometry
- 7. Assay of official compounds by different titrations
- 8. Assay of official compounds by instrumental techniques.
- 9. Development of Stability study protocol
- 10. Testing of related and foreign substances in drugs and raw materials
- 11. Colorimetric determination of drugs by using different reagents
- 12. Imupurity profiling of drugs
- 13. Determination of saponification value, Iodine value, Peroxide value, Acidvalue in herbal products
- 14. Determination of fat content and rancidity in herbal products
- 15. Analysis of vitamin in pharmaceutical formulations
- 16. Accelerated stability studies (1 experiment)
- 17. Improved solubility of drugs using surfactant systems (1 experiment)
- 18. Improved solubility of drugs using co-solvency method (1 experiment)
- 19. Determination of Pka and Log p of drugs.

2nd Semester

MPAQA 201T. ADVANCED INSTRUMENTAL ANALYSIS

Teaching and Examination Scheme:

	Teaching Scheme Credits			Credits		Marks	Duration of End Semester	
	L	T	P	C	Sessional	End Semester	Total	Examination
						Exam		
-	4	0	0	4	25	75	100	3 hours

Scope: This subject deals with various hyphenated analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealtare LC-MS, GC-MS, and hyphenated techniques.

Objectives: After completion of course student is able to know,

- interpretation of the NMR, Mass and IR spectra of various organic compounds
- > theoretical and practical skills of the hyphenated instruments
- > identification of organic compounds

UNIT	CONTENT	No. of
		Hrs.
I	HPLC: Principle, instrumentation, pharmaceutical applications, peak shapes,	
	capacity factor, selectivity, plate number, plateheight, resolution, band	12
	broadening, pumps, injector, detectors, columns, column problems, gradient	
	HPLC, HPLC solvents,trouble shooting, sample preparation, method	
	development, New developments in HPLC-role and principles of ultra, nano	
	liquid chromatography in pharmaceutical analysis. Immobilized polysaccharide	
	CSP's: Advancement in enantiomeric separations, revised phase Chiral method	
	development and HILIC approaches. HPLC in Chiral analysis of pharmaceuticals.	
	Preparative HPLC, practical aspects of preparative HPLC.	
II	Bio-chromatography: Size exclusion chromatography, ionexchange	
	chromatography, ion pair chromatography, affinity chromatography general	12
	principles, stationary phases and mobilephases.	
	Gas chromatography: Principles, instrumentation, derivatization, head space	

	sampling, columns for GC, detectors, quantification. High performance Thin	
	Layer chromatography: Principles, instrumentation, pharmaceutical applications.	
	III Super critical fluid chromatography: Principles, instrumentation, pharmaceutical	III
12	applications.	
	Capillary electrophoresis: Overview of CE in pharmaceutical analysis, basic	
	configuration, CE characteristics, principles of CE, methods and modes of CE.	
	General considerations and method development in CE, Crown ethers as buffer	
	additives in capillary electrophoresis.CE-MS hyphenation.	
	IV Mass spectrometry: Principle, theory, instrumentation of mass spectrometry,	IV
12	different types of ionization like electron impact, chemical, field, FAB and	
	MALD, APCI, ESI, APPI mass fragmentation and its rules, meta stable ions,	
	isotopic peaks and applications of mass spectrometry. LC-MS hyphenation and	
	DART MS analysis.Mass analysers (Quadrpole, Time of flight,FT-ICR, ion trap	
	and Orbitrap) instruments. MS/MS systems(Tandem: QqQ, TOF-TOF;Q-IT, Q-	
	TOF, LTQ-FT, LTQ-Orbitrap.	
12	V . NMR spectroscopy: Quantum numbers and their role in NMR, Principle,	V
	Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals	
	in various compounds, Chemical shift, Factors influencing chemical shift, Spin-	
	Spincoupling, Coupling constant, Nuclear magnetic double resonance, Brief	
	outline of principles of FT-NMR with reference to 13CNMR:Spin spin and spin	
	lattice relaxation phenomenon. 13C NMR, 1-Dand 2-D NMR, NOESY and	
	COSY techniques, Interpretation and Applications of NMR spectroscopy.LC-	
	NMR hyphenations.	
	TOF, LTQ-FT, LTQ-Orbitrap. V . NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spincoupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR with reference to 13CNMR: Spin spin and spin lattice relaxation phenomenon. 13C NMR, 1-Dand 2-D NMR, NOESY and COSY techniques, Interpretation and Applications of NMR spectroscopy. LC-	V

- 1. Spectrometric Identification of Organic compounds Robert M Silverstein, Sixth edition, John Wiley & Sons, 2004.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Instrumental methods of analysis Willards, 7th edition, CBS publishers.
- 4. Organic Spectroscopy William Kemp, 3rd edition, ELBS, 1991.

- 5. Quantitative analysis of Pharmaceutical formulations by HPTLC P DSethi, CBS Publishers, New Delhi.
- 6. Quantitative Analysis of Drugs in Pharmaceutical formulation P D Sethi,3rd Edition, CBS Publishers, New Delhi, 1997.
- 7. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, Marcel Dekker Series.
- 8. Organic Spectroscopy by Donald L. Paviya, 5th Edition.

MPAQA 202T. MODERN BIO-ANALYTICAL TECHNIQUES

Teaching and Examination Scheme:

Teaching Scheme			Credits		Marks	Duration of End Semester	
L	T	P	C	Sessional	End Semester	Total	Examination
					Exam		
4	0	0	4	25	75	100	3 hours

Scope: This subject is designed to provide detailed knowledge about the importance of analysis of drugs in biological matrices.

Objectives: Upon completion of the course, the student shall be able to understand

- 1. Extraction of drugs from biological samples
- 2. Separation of drugs from biological samples using different techniques
- 3. Guidelines for BA/BE studies.

UNIT	CONTENT	No. of								
		Hrs.								
I	Extraction of drugs and metabolites from biological matrices:General need, principle									
	and procedure involved in the Bioanalytical methods such as Protein precipitation,	12								
	Liquid -Liquid extraction and Solid phase extraction and other novel sample									
	preparation approach. Bioanalytical method validation: USFDA and EMEA									
	uidelines.									
II	Biopharmaceutical Consideration:Introduction, Biopharmaceutical Factors Affecting									
	Drug Bioavailability, In Vitro: Dissolution and Drug Release Testing, Alternative									
	Methods of Dissolution Testing Transport models, Biopharmaceutics Classification									
	System. Solubility: Experimental methods. Permeability: In-vitro, in-situ and In-vivo									
	methods.									
III	Pharmacokinetics and Toxic kinetics: Basic consideration, Drug interaction (PK-PD									
	interactions), Theeffect of protein-binding interactions, The effect of tissue-binding	12								
	interactions, Cytochrome P450-based drug interactions, Drug interactions linked to									
	transporters. Microsomal assays Toxicokinetics-Toxicokinetic evaluation in									
	preclinical studies,Importance and applications of toxic kinetic studies. LC-MS in									

	bioactivity screening and proteomics.	
IV	Cell culture techniques Basic equipments used in cell culture lab. Cell culture	
	media, various types of cell culture, general procedure for cell cultures; isolation of	12
	cells, subculture, cryopreservation, characterization of cells and their applications.	
	Principles and applications of cellviability assays (MTT assays), Principles and	
	applications of flowcytometry.	
V	Metabolite identification:In-vitro / in-vivo approaches, protocols and sample	12
	preparation.Microsomal approaches (Rat liver microsomes (RLM) and Human liver	
	microsomes (HLM) in Met -ID. Regulatory perspectives. In-vitro assay of drug	
	metabolites & drug metabolizing enzymes.Drug Product Performance, In Vivo:	
	Bioavailability and Bioequivalence: Drug Product Performance, Purpose of	
	Bioavailability Studies, Relative and Absolute Availability. Methods for Assessing	
	Bioavailability, Bioequivalence Studies, Design and Evaluation of Bioequivalence	
	Studies, Study Designs, Crossover Study Designs, Generic Biologics (Biosimilar	
	Drug Products), Clinical Significance of Bioequivalence Studies.	

- 1. Analysis of drugs in Biological fluids Joseph Chamberlain, 2nd Edition.CRC Press, Newyork. 1995.
- 2. Principles of Instrumental Analysis Doglas A Skoog, F. James Holler, Timothy A. Nieman, 5th edition, Eastern press, Bangalore, 1998.
- 3. Pharmaceutical Analysis Higuchi, Brochmman and Hassen, 2nd Edition, Wiley Interscience Publications, 1961.
- 4. Pharmaceutical Analysis- Modern methods Part B J W Munson, Volume 11, Marcel Dekker Series
- 5. Practical HPLC method Development Snyder, Kirkland, Glaich, 2ndEdition, John Wiley & Sons, New Jercy. USA.
- 6. Chromatographic Analysis of Pharmaceuticals John A Adamovics, 2ndEdition, Marcel Dekker, Newyork, USA. 1997.
- 7. Chromatographic methods in clinical chemistry & Toxicology Roger LBertholf, Ruth E Winecker, John Wiley & Sons, New Jercy, USA. 2007.
- 8. Good Laboratory Practice Regulations, 2nd Edition, Sandy Weinberg Vol.69, Marcel Dekker Series, 1995.
- 9. Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989.
- 10. ICH, USFDA & CDSCO Guidelines.

MPAQA 203T. PHARMACEUTICAL VALIDATION

Teaching and Examination Scheme:

Teac	hing Scl	heme	Credits	Marks			Duration of End Semester
L	T	P	C	Sessional	End Semester	Total	Examination
					Exam		
4	0	0	4	25	75	100	3 hours

Scope: The main purpose of the subject is to understand about validation and how itcan be applied to industry and thus improve the quality of the products. The subject covers the complete information about validation, types, methodology and application.

Objectives: At completion of this course, it is expected that students will be able to understand

- ➤ The concepts of calibration, qualification and validation
- ➤ The qualification of various equipments and instruments
- Process validation of different dosage forms
- ➤ Validation of analytical method for estimation of drugs
- > Cleaning validation of equipments employed in the manufacture of pharmaceuticals

UNIT	CONTENT	No. of					
		Hrs.					
I	Introduction to validation: Definition of Calibration, Qualification and						
	Validation, Scope, frequency and importance. Difference between calibration and	10					
	validation.Calibration of weights and measures. Advantages of Validation, scope						
	of Validation,Organization for Validation, Validation Master plan, Types						
	of Validation, Streamlining of qualification & Validation process and Validation						
	Master Plan. Qualification: User requirement specification, Design qualification,						
	Factory Acceptance Test (FAT)/Site Acceptance Test (SAT), Installation						
	qualification, Operational qualification, Performance qualification, Re-						
	Qualification (Maintaining status-Calibration Preventive Maintenance, Change						
	management).						
II	Qualification of manufacturing equipment: Dry Powder Mixers, Fluid Bed and						

	Tray dryers, Tablet Compression(Machine), Dry heat sterilization/Tunnels,	10
		10
	Autoclaves, Membrane filtration, Capsule filling machine.Qualification of	
	analytical instruments: UV-Visible spectrophotometer, FTIR, DSC, GC, HPLC,	
	HPTLC, LC-MS.	
III	Qualification of laboratory equipments: Hardness tester, Friability test	
	apparatus, tap density tester, Disintegration tester, Dissolution test	10
	apparatusValidation of Utility systems: Pharmaceutical water system &pure	
	steam, HVAC system, Compressed air and nitrogen.	
IV	Process Validation: Concept, Process and documentation of Process Validation.	
	Prospective, Concurrent & Retrospective Validation, Re validation criteria,	20
	Process Validation of various formulations (Coated tablets, Capsules,	
	Ointment/Creams, Liquid Orals and aerosols.), Aseptic filling: Media fill	
	validation, USFDA guidelines on Process Validation- A life cycle	
	approach. Analytical method validation: General principles, Validation of	
	analytical method as per ICH guidelines and USP.	
	Cleaning Validation: Cleaning Method development, Validation of analytical	
	method used in cleaning, Cleaning of Equipment, Cleaning of Facilities. Cleaning	
	in place (CIP). Validation of facilities in sterile and non-sterile	
	plant.Computerized system validation: Electronic records and digital signature -	
	21 CFR Part 11 and GAMP	
V	General Principles of Intellectual Property: Concepts of Intellectual Property	10
	(IP), Intellectual Property Protection (IPP), Intellectual Property Rights (IPR);	
	Economic importance, mechanism for protection of Intellectual Property –	
	patents, Copyright, Trademark; Factors affecting choice of IP protection; Penalties	
	for violation; Role of IP in pharmaceutical industry; Global ramification and	
	financial implications. Filing a patent applications; patent application forms and	
	guidelines. Types patent applications-provisional and non provisional, PCT and	
	convention patent applications; International patenting requirement procedures	
	and costs; Rights and responsibilities of a patentee; Practical aspects regarding	
	maintaining of a Patent file; Patent infringement meaning and scope. Significance	
	of transfer technology (TOT), IP and ethics-positive and negative aspects of IPP;	
	Societal responsibility, avoiding unethical practices.	
	bottom responsionity, avoiding uncunear practices.	

- 1. B. T. Loftus & R. A. Nash, "Pharmaceutical Process Validation", Drugs and Pharm Sci. Series, Vol. 129, 3rd Ed., Marcel Dekker Inc., N.Y.
- 2. The Theory & Practice of Industrial Pharmacy, 3rd edition, Leon Lachman, Herbert A. Lieberman, Joseph. L. Karig, Varghese Publishing House, Bombay.
- 3. Validation Master plan by Terveeks or Deeks, Davis Harwood International publishing.
- 4. Validation of Aseptic Pharmaceutical Processes, 2nd Edition, by Carleton&Agalloco,(Marcel Dekker).
- 5. Michael Levin, Pharmaceutical Process Scale-Up", Drugs and Pharm. Sci.Series, Vol. 157,2nd Ed., Marcel Dekker Inc., N.Y.
- 6. Validation Standard Operating Procedures: A Step by Step Guide forAchieving Compliance in the Pharmaceutical, Medical Device, and BiotechIndustries, Syed ImtiazHaider
- 7. Pharmaceutical Equipment Validation: The Ultimate QualificationHandbook, Phillip A. Cloud, Interpharm Press
- 8. Validation of Pharmaceutical Processes: Sterile Products, Frederick J.Carlton (Ed.) and James Agalloco (Ed.), Marcel Dekker
- 9. Analytical Method validation and Instrument Performance Verification by Churg Chan, Heiman Lam, Y.C. Lee, Yue. Zhang, Wiley Interscience.
- 10. Huber L. Validation and Qualification in Analytical Laboratories. InformaHealthcare
- 11. Wingate G. Validating Corporate Computer Systems: Good IT Practice forPharmaceutical Manufacturers. Interpharm Press
- 12. LeBlanc DA. Validated Cleaning Technologies for Pharmaceutical Manufacturing.Interpharm Press

MPAQA 204T. PHARMACEUTICAL MANUFACTURING TECHNOLOGY Teaching and Examination Scheme:

Teac	hing Scl	heme	Credits	Marks			Duration of End Semester
L	T	P	C	Sessional	End Semester	Total	Examination
					Exam		
4	0	0	4	25	75	100	3 hours

Scope: This course is designed to impart knowledge and skills necessary to train the students with the industrial activities during Pharmaceutical Manufacturing.

Objectives: At completion of this course it is expected that students will be able tounderst and,

- 1. The common practice in the pharmaceutical industry developments, plant layout and production planning
- 2. Will be familiar with the principles and practices of aseptic process technology, non sterile manufacturing technology and packaging technology.
- 3. Have a better understanding of principles and implementation of Quality by design (QbD) and process analytical technology (PAT) in pharmaceutical manufacturing

UNIT	CONTENT	No. of						
		Hrs.						
I	Pharmaceutical industry developments: Legal requirements and Licenses for API							
	and formulation industry, Plant location-Factors influencing. Plant layout: Factors	12						
	influencing, Special provisions, Storage space requirements, sterile and aseptic							
	area layout.Production planning: General principles, production							
	systems, calculation of standard cost, process planning, routing,							
	loading, scheduling, dispatching of records, production control.							
II	Aseptic process technology: Manufacturing, manufacturing flowcharts, in							
	process-quality control tests for following sterile dosage forms: Ointment,							
	Suspension and Emulsion, Dry powder, Solution (Small Volume & large							
	Volume). Advanced sterile product manufacturing technology: Area planning&							

	anning manufal control well and floor treatment finteness and machinesis about	
	environmental control, wall and floor treatment, fixtures and machineries, change	
	rooms, personnel flow, utilities& utilities equipment location, engineering and	
	maintenance.Process Automation in Pharmaceutical Industry: With specific	
	reference to manufacturing of sterile semisolids, Small Volume Parenterals &	
	Large Volume Parenterals (SVP & LVP), Monitoring of Parenteral manufacturing	
	facility, Cleaning in Place (CIP), Sterilization in Place (SIP), Prefilled Syringe,	
	Powdered Jet, Needle Free Injections, and Form Fill Seal Technology	
	(FFS).Lyophilization technology: Principles, process, equipment.	
III	Non sterile manufacturing process technology: Manufacturing, manufacturing	
	flowcharts, in process-quality control tests for following Non-Sterile solid dosage	12
	forms: Tablets(compressed & coated), Capsules (Hard & Soft).Advance non-	
	sterile solid product manufacturing technology: Process Automation in	
	Pharmaceutical Industry with specific reference to manufacturing of tablets and	
	coated products, Improved Tablet Production: Tablet production	
	process, granulation and pelletization equipments, continuous and batch mixing,	
	rapid mixing granulators, rota granulators, spheronizers and marumerisers, and	
	other specialized granulation and drying equipments. Problems	
	encountered.Coating technology: Process, equipments, particle coating,fluidized	
	bed coating, application techniques. Problems encountered.	
IV	Containers and closures for pharmaceuticals: Types, performance, assuring	
	quality of glass; types of plastics used,Drug plastic interactions, biological tests,	12
	modification of plasticsby drugs; different types of closures and closure liners;	
	film wrapper; blister packs; bubble packs; shrink packaging; foil /plastic pouches,	
	bottle seals, tape seals, breakable seals andsealed tubes; quality control of	
	packaging material and filling equipment, flexible packaging, product package	
	compatibility, transit worthiness of package, Stability aspects of	
	packaging. Evaluation of stability of packaging material.	
V	Quality by design (QbD) and process analytical technology(PAT): Current	12
•	approach and its limitations. Why QbD is required, Advantages, Elements of QbD,	1#
	Terminology: QTPP. CMA, CQA,CPP, RLD, Design space, Design of	
	Design, Formulations by Design, QbD for drug products, QbD for	
	DrugSubstances, QbD for Excipients, Analytical QbD. FDA initiative onprocess	

analytical technology. PAT as a driver for improving quality and reducing costs: quality by design (QbD), QA, QC and GAMP. PAT guidance, standards and regulatory requirements.

- 1. Lachman L, Lieberman HA, Kanig JL. The theory and practice of industrialpharmacy 3rded., Varghese Publishers, Mumbai 1991.
- 2. Sinko PJ. Martin's physical pharmacy and pharmaceutical sciences, 5thed., B.I. Publications Pvt. Ltd, Noida, 2006.
- 3. Lieberman HA, Lachman L, Schwartz JB. Pharmaceutical dosage forms:tablets Vol. I-III,2 nded., CBS Publishers & distributors, New Delhi, 2005.
- 4. Banker GS, Rhodes CT. Modern Pharmaceutics, 4thed., Marcel DekkerInc, New York, 2005.
- 5. Sidney H Willing, Murray M, Tuckerman. Williams Hitchings IV, Goodmanufacturing of pharmaceuticals (A Plan for total quality control) 3rdEdition.Bhalani publishing house Mumbai.
- 6. Indian Pharmacopoeia. Controller of Publication. Delhi, 1996.
- 7. British Pharmacopoeia. British Pharmacopoeia Commission Office, London, 2008.
- 8. United States Pharmacopoeia. United States PharmacopeialConvention, Inc, USA, 2003.
- 9. Dean D A, Evans E R and Hall I H. Pharmaceutical PackagingTechnology. London, Taylor & Francis, 1st Edition. UK.
- 10. Edward J Bauer. Pharmaceutical Packaging Handbook. 2009. InformaHealth care USA Inc. New york.
- 11. Shaybe Cox Gad.Pharmaceutical Manufacturing Handbook. John Willeyand Sons, New Jersey, 2008.

MPAQA 205P. PHARMACEUTICAL ANALYSIS AND QUALITY ASSURANCE – PRACTICALS

Teaching and Examination Scheme:

Teac	hing Scl	neme	Credits	Marks			Duration of End Semester
L	T	P	C	Sessional	End Semester	Total	Examination
					Exam		
0	0	12	6	50	100	150	6 hours

- 1. Comparison of absorption spectra by UV and Wood ward Fiesure rule
- 2. Interpretation of organic compounds by FT-IR
- 3. Interpretation of organic compounds by NMR
- 4. Interpretation of organic compounds by MS
- 5. Determination of purity by DSC in pharmaceuticals
- 6. Identification of organic compounds using FT-IR, NMR, CNMR and Mass spectra
- 7. Bio molecules separation utilizing various sample preparation techniques and Quantitative analysis of components by gel electrophoresis.
- 8. Bio molecules separation utilizing various sample preparation techniques and Quantitative analysis of components by HPLC techniques.
- 9. Isolation of analgesics from biological fluids (Blood serum and urine).
- 10. Protocol preparation and performance of analytical/Bioanalyticalmethodvalidation.
- 11. Protocol preparation for the conduct of BA/BE studies according toguidelines.
- 12. In process and finished product quality control tests for tablets, capsules, parenterals and creams
- 13. Quality control tests for Primary and secondary packing materials
- 14. Assay of raw materials as per official monographs
- 15. Testing of related and foreign substances in drugs and raw materials
- 16. Validation of an analytical method for a drug
- 17. Validation of a processing area
- 18. Qualification of at least two analytical instruments
- 19. Cleaning validation of one equipment
- 20. Qualification of Pharmaceutical Testing Equipment (Dissolution testingapparatus, Friability Apparatus, Disintegration Tester)
- 21. Case study on application of QbD

3rd SEMESTER

MRM301T - RESEARCH METHODOLOGY & BIOSTATISTICS

Teaching and Examination Scheme:

	Teac	hing Scl	neme	Credits	Marks			Duration of End Semester
	L	T	P	C	Sessional	End Semester	Total	Examination
						Exam		
-	4	0	0	4	25	75	100	3 hours

UNIT	CONTENT						
		Hrs.					
I	General Research Methodology: Research, objective, requirements, practical difficulties, review of literature, study design, types of studies, strategies to eliminate errors/bias, controls, randomization, crossover design, placebo, blinding techniques.	12					
II	Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests(students "t" test, ANOVA, Correlation coefficient, regression), non-parametric tests (wilcoxan rank tests, analysis of variance, correlation, chi square test), null hypothesis, P values, degree of freedom, interpretation of P values.	12					
III	Medical Research: History, values in medical ethics, autonomy, beneficence, non-maleficence, double effect, conflicts between autonomy and beneficence/non-maleficence, euthanasia, informed consent, confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees, cultural concerns, truth telling, online business practices, conflicts of interest, referral, vendor relationships, treatment of family members, sexual relationships, fatality.	12					
IV	CPCSEA guidelines for laboratory animal facility: Goals, veterinary care, quarantine, surveillance, diagnosis, treatment and control of disease, personal hygiene, location of animal facilities to laboratories, anesthesia, euthanasia, physical facilities, environment, animal husbandry, record keeping, SOPs, personnel and	12					

	training, transport of lab animals.							
V	Declaration of Helsinki: History, introduction, basic principles for all medical	12						
	research, and additional principles for medical research combined with medical care.							

