[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2063)

848

B.Tech 4th Semester Examination Digital Electronics and Microprocessor Architecture EC-4041

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/continuation sheet will be issued.

- **Note :** (i) Attempt only five questions selecting one question from each section A, B, C and D.
 - (ii) Section E is compulsory.
 - (iii) Use of non-programmable calculator is allowed.

SECTION - A

- 1. (a) Perform the following conversion:
 - (i) (BAD)₁₆ into Decimal Number.
 - (ii) (CAD)₁₆ into octal Number. (10)
 - (b) Write short note on:
 - (i) BCD code (ii) Excess-3 code (10)
- 2. (a) Perform the following arithmetic operations.
 - (i) $(1010)_2 \times (101)_2$ (ii) $(564)_8 (475)_8$ (10)
 - (b) (i) Find 2's compliment of (10010.11)₂
 - (ii) Determine 16's compliment of hex number 5479. (10)

848/400 [P.T.O.]

	3	848
(b)	Draw the internal building blocks of 8080 microprocessor and compare it with 8085 microprocessor.	(10)
(a)	Explain different control signal used by 8085.	(10)
(b)	What do you understand by dynamic debugging. Explain various methods of debugging in 8080.	(10)

SECTION - E

9. Each subpart carry 2 marks:

8.

- (i) Express y = A + BC into canonical SOP form.
- (ii) Signify the importance of gray code.
- (iii) Implement Ex-OR gate with minimum number of NAND gate.
- (iv) Implement the NAND gate using 2×1 MUX.
- (v) Differentiate synchronous and asynchronous counter.
- (vi) Convert (19.3725)₁₀ into equivalent binary number.
- (vii) A decade counter is applied with 10MHz clock frequency. What will be the frequency of wave form at the output?
- (viii) Write the significance of BCD code.
- (ix) What do you understand by resolution in D/A converter?
- (x) Which logic gates are called universal gate? "Universal gates follow commulative law but not follow associative law". Explain the statement. (2×10=20)