[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2063)

825

B.Tech 4th Semester Examination Discrete Structures

CS-4002

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all selecting one from each of the Sections A, B, C & D. Section E is compulsory.

SECTION - A

- 1. (a) If A and B are two sets, prove that $A-B=A-(A\cap B)$ (10)
 - (b) Prove that the following are true for sets A and B.

$$(A \cup B) \cap (\overline{A \cap B}) = (A \cap \overline{B}) \cup (B \cap \overline{A})$$
 (10)

- 2. (a) Let U = {I, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 2, 4, 5}, B = {4, 5, 6, 7}, C = {1 4, 6}. Compute: (i) $A \cap B$, (ii) A B, (iii) $A \cap (B \cup C)$, (iv) $A \cap C$. (10)
 - (b) Define equivalence relation. If R and S are equivalence relations on a set A, then show that $R \cap S$ is an equivalence relation. (10)

825/1400 [P.T.O.]

		3 SECTION - D	825
7.	(a)	Define a binary tree. Show that a tree with n vertices has n -1 edges.	(10)
	(b)	Prove that a finite connected graph G is Eulerian if and only if each vertex has even degree.	(10)
8.	(a)	Show that the maximum number of vertices in a binary tree of height h is $2^{h+1}-1$.	(10)
	(b)	Define spanning tree. Write the Kruskal's algorithm to find a minimal spanning tree of a weighted graph.	(10)
		SECTION - E	
9.	(a)	Prove that for any 3 sets A, B and C, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.	
	(b)	List all partitions of the set {1, 2}.	
	(c)	Define asymmetric relation with an example.	
	(d)	Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.	
	(e)	Define complete graph and give an example.	

(f) Let A = $\{1, 2, 3\}$, find A×A.

(g) If P and Q stand for the statement

P: It is hot

Q: It is humid

Then what does the statement $(P \land \neg Q)$ mean?

- (h) Explain postorder traversal of a binary tree.
- (i) List applications of weighted graphs in computer science.
- (j) Write short note on prepositional calculus.

 (2×10)