[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2063)

835

B. Tech 4th Semester Examination Electromagnetic Field Theory EE-4003

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/ continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question from each of the section A, B, C, and D and all the subparts of the question in Section E. All questions carry equal marks and assume missing data if any suitably.

	SECTION - A							
1.	(a)	Establish relationship between cartesian and cylindrical coordinate systems.	(6)					
	(b)	Define potential. Derive the expression potential at a point due to a point charge.	(6)					
	(c)	In free space let Q_1 be 10 nC be at $P_1(0,-4,0)$ and Q_2 be 20 nC be at $P_2(0,0,4)$. Find (a) E at the (8) origin, (b) Where should a 30 nC point charge be located so that E=0 at the origin.	(8)					
2.	(a)	Given $V = x^2y + xy^2 + xz^2$, (a) find the gradient of V and (b) evaluate it at (1, -1, 3).	(6)					
	(b)	Derive the expression for electric field strength due to infinite line charge.	(8)					
	(c)	Derive the expression for energy stored in a capacitor.	(6)					
835/800			[P.T.O.]					

		2	835				
	SECTION - B						
3.	(a)	Name different types of media from EMFT point of view. State Maxwell's equations in their phasor form.	(8)				
	(b)	Define electric displacement and displacement density.	(4)				
	(c)	A toroid has air core and has a cross- sectional area of 10 mm ² . It has 1000 turns and its mean radius is 10 mm. Find its inductance.	(8)				
4.	(a)	State and prove Laplace's equation and write its applications.	(10)				
	(b)	State and prove Ampere's force law.	(10)				
	SECTION - C						
5.	(a)	Explain conductors and dielectric from current density and frequency point of view with their field of application.	(8)				
	(b)	Define wave velocity, phase shift constant, wavelength and phase velocity of wave.	(6)				
	(c)	The wavelength of an x directed plane wave in a lossless medium is 0.25 m and the velocity of propagation is 1.5 x 10^{10} cm/s. The wave has z directed electric field with amplitude equal to 10V m. Find the frequency and relative permittivity of the medium. The medium has $\mu = \mu_0$.	(8)				
6.	(a)	Derive the wave propagation characteristic of an EM wave in good conductors.	(8)				
	(b)	State the equation of continuity and its applications.	(6)				
	(c)	Calculate the capacitance of an isolated sphere of radius 1 cm.	(4)				

V.	free	free space is $4\pi \times 10^{-7}$ wb/m ² , the magnetic field strength is					
	(a)	1 A/m	(b) $4\pi \times 10^{-7} \text{ A/m}$				
	(c)	1 wb/m	(d) $4\pi \times 10^{-7}$ wb/m				
vi.	The charge stored in a capacitor when a constant current of 2 μ A flows for 20 seconds is						
	(a)	40 μC	(b) 10 μC				
	(c)	400 μC	(d) 200 μC				
/ii.	The wavelength of a sine wave with propagation constant = 0.1π + j0.2 is						
	(a)	10 m	(b) 20m				
	(c)	30 m	(d) 25 m				
iii.	The magnitude of H of a plane wave in a medium is 5 A/m. The medium constants are $\in_r = 4$, $\mu_r = 1$. The average power is						
	(a)	2354 w/m ²	(b) 23.54 w/m ²				
	(c)	235.4 w/m ²	(d) 2.354 w/m ²				
ix.	At low frequencies, Z_0 of the transmission line is						
	(a)	$\sqrt{\frac{R}{G}}$ ohm	(b) $\sqrt{\frac{G}{R}}$				
	(c)	$\sqrt{\frac{L}{C}}$	(d) $\sqrt{\frac{C}{L}}$				
Χ.	If $Z_0 = 100 + j200$ and $Z_0 = 50$ ohm, the normalized impedance is						
	(a)	1 + J2	(b) $2 + J4$				
	(c)	$\sqrt{20}$	(d) 6	(2×10)			