[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2063)

802

B.Tech 2nd Semester Examination Engineering Physics

NS-105

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, select one question from each sections A, B, C and D. Section E (question 9) is compulsory.

SECTION - A

1. (a) Establish the relation between the edge of the unit cell and atomic radius for the bcc and fcc lattice. Derive the relation between the lattice constant of a cubic crystal and the density of crystal material.

(8)

- (b) Draw (111) and (111) planes inside the unit cell of a cubic crystal. Determine the Miller indices of the direction that is common to both planes.
- (8)
- (c) Show analytically that five-fold rotation axis does not exist in a crystal lattice.

(4)

2. (a) What are density of states in metals?

Derive an expression for density of energy states and hence obtain Fermi energy of a metal.

(12)

802/ [P.T.O.]

2

802

		3	802
	(b)	Discuss theory of antiferromagnetism.	(7)
	(c)	Discuss the behaviour of a normal conductor in presence of magnetic field, when it is cooled to a temperature below critical temperature.	(7)
6.	(a)	Discuss the behavior of dielectric in alternating field.	(7)
	(b)	Distinguish between soft & hard magnetic materials and mention their applications.	(7)
	(c)	Discuss BCS theory of superconductivity.	(6)
		SECTION - D	
7.	(a)	Discuss the construction and working of He-Ne laser. What is the role of He in this laser? What is efficiency of this laser?	(15)
	(c)	Discuss one sensing application of optical fibres.	(5)
8.	(a)	Explain the principle of lasers. What are the characteristics of laser beam. Can we obtain laser beam from spontaneous emissions? Explain.	(7)
	(b)	Discuss attenuation in optical fibres.	(8)
	(c)	An optical fibre has an attenuation of 3.8dB/km at 850nm. if 0.4m W of optical power is initially launched with fibre,	
		calculate the power level after 8km.	(5)

802/

[P.T.O.]

		4	802	
SECTION - E				
9.	(a)	What are dielectrics? Write their important uses.	(2)	
	(b)	What are ferrites? Mention their applications.	(2)	
	(c)	What is coordination number? What factors control the coordination number?	(2)	
	(d)	Explain the concept of negative effective mass.	(2)	
	(e)	Write Richardson's equation and discuss its importance.	(2)	
	(f)	Discuss briefly importance of dipole moments in classification of magnetic materials.	(2)	
			(2)	
	(g)	What are cooper pairs?	(2)	
	(h)	Mention main applications of Ruby laser.	(2)	
	(i)	Explain the principle of optical fibre communication.	(2)	
	(j)	Explain briefly pulse dispersion in optical fibres.	(2)	