[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2063)

822

B.Tech 4th Semester Examination Numerical Methods and Computer Programming ID-4001

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all selecting one question from each of section A, B, C and D. Section E is compulsory attempt all the subparts of section.

SECTION - A

1. (a	. f	ormula	, find f	on's d (8) give 0) = 10	n f(1) =	= 3, f(3	3) = 31,	(10)
(b	໌ f	ind a	a cul mate t	ange's i bic po he follo	olynon wing d	nial ata:		

x: 3 2 1 -1f(x): 3 12 15 -21 (10)

2. (a) Apply Gauss forward Interpolation formula to obtain f(x) at x=32 given that x: 25 30 35 40

f(x): 0.2707 0.3027 0.3386 0.3794 **(10)**

(b) write a computer program in C for Newton's backward Interpolation Method. (10)

822/ [P.T.O.]

		2 SECTION - B	822
3.	(a)	Obtain $\sqrt{12}$ to four decimal places by Newton's Raphson method.	(10)
	(b)	Find the real root of the equation $x^{ex} = 2$ by Regular Falsi Method is four stages.	(10)
4.	(a)	Solve by Gauss-Seidal method, the following system of equations	(10)
		6x + y + z = 105; $4x + 8y + 3z = 155$; $5x + 4y - 10z = 65$	
	(b)	Solve the equations	
		10-2y-2z=6; $x+10y-2z=7$; $x-y+10z=8$ by Relaxation Method.	(10)
		SECTION - C	
5.	(a)	Find first and second order derivatives at $x = 0.75$, from the table	
		x: 0.50 0.75 1.00 1.25 1.50	
		y: 0.13 0.42 1.00 1.95 2.35	(10)
	(b)	Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ using Trapezoidal rule considering seven ordinates. Compare it with exact value.	(10)
6.	(a)	Write a computer program in C to perform	(10)
Ο.	(α)	integration using Simpson's 1/3 rule.	(10)
	(b)	Evaluate $\int_{1}^{5.2} \log x dx$ using Weddle's and Simpson's 4 3/8 rules.	(10)

3

7. (a) By Cranck-Nicholson method solve the

equation $\frac{\partial^2 4}{\partial x^2} = \frac{\partial u}{\partial t}$ subject to u(x, 0) = 0,

SECTION - D

u(0, t) = 0 and u(1, t) = t for two time (10)steps.

Define elliptic, parabolic and hyperbolic (b) type of partial differential equations and derive standard 5-point formula to solve

> $\frac{\partial^2 \mathbf{4}}{\partial \mathbf{x}^2} = \frac{\partial^2 \mathbf{4}}{\partial \mathbf{v}^2} = \mathbf{0}$ (10)

8. (a) Solve the Laplace equation over the square mesh of side 4 units satisfying the boundary conditions:

 $u(0, y) = 0, 0 \le y \le 4$

 $u(4, y) = 12 + y, 0 \le y \le 4$

 $u(x, 0) = 3x, 0 \le y \le 4$

(10) $u(x, 4) = x^2, 0 \le x \le 4$

Using Schmidt's process solve 24 $u_{xx} = u_{t}$ where 0 < x < 1, t > 0 with boundary conditions u(0, t) = 0 = u(10, t)

> $u(x, 0) = \frac{x(10-x)}{25}$ and choosing h=1 and k^2s^5 suitably. Find u_{iN} for i = 1, 2, 3.....9and j=1, 2, 3, 4.

(10)

822

822/ [P.T.O.]

SECTION - E

9.	(a)	Obtain the divided difference table for the
		following data:

$$x: -1 0 2 3$$

 $f(x): -8 3 1 12 (2)$

$$X_{n+1} = X_n [2 - NX_n]$$
 (2)

(g) Write a computer program in C for bisection method to find root of
$$f(x)=0$$
. (2)

(h) State Crank-Nicholson's Scheme to solve
$$\frac{\partial^2 4}{\partial x^2} = a \frac{\partial 4}{\partial t}, \text{ when } k = ah^2. \tag{2}$$

(i) Write formula for
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $x = x_0$ using forward differences. (2)

(j) Prove that
$$\nabla = 1 - E^{-1}$$
. (2)