[Total No. of Questions - 11] [Total No. of Printed Pages - 4] (2063)

890

MBA 2nd Semester Examination Quantitative Methods and Operations Research (N.S.) MBA-201

Time: 3 Hours Max. Marks: 60

The candidates shall limit their answers precisely within the answer-book (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: (i) Attempt all parts of question in Section-A.

- (ii) Attempt any four questions from Section-B.
- (iii) Attempt any two questions from Section-C.

SECTION - A (Do all parts)

- 1. (i) Briefly describe advantages and limitations of Operations Research.
 - (ii) Discuss briefly about the most widely used criterion for evaluating various alternatives in decision making under risk.
 - (iii) Briefly describe decision Tree Analysis.
 - (iv) Take a linear programming problem example and write its dual problem.
 - (v) What are important steps in the application of PERT/CPM?
 - (vi) What is North West Corner method? Where to we use it?
 - (vii) What is meant by optimal strategy in game theory?

890/600 [P.T.O.]

890

(5)

(5)

(viii) In a querring system with Poissonian arrivals and exponential departures and having traffic intensity ρ (<1), what is the probability that there are less than n customers in a single sever system?

2

- (ix) Explain the dominance principle used in the reduction of order of pay-off matrix of a game problem.
- (x) What are the various types of inventories? $(2\times10=20)$

SECTION - B (Do any four questions)

- 2. What are the Operations Research models in practice?
- 3. Discuss about various Criteria of decisionmaking under uncertainty. (5)
- 4. Solve the following problem using graphical method:

Maximize

z = 3x + 2y

subject to constraints

 $x - y \le 2$

 $x + y \le 4$

where $x_1 y \ge 0$ (5)

For the game problem prescribed by pay-off matrix to player A and given by

$$A \begin{bmatrix} I & II \\ 2 & 5 \\ 7 & 3 \end{bmatrix}$$

determine the value of the game and optimum strategies for two players.

6. Solve the assignment problem prescribed by the cost matrix of person versus jobs.

3

to find the minimum cost of assignment. (5)

7. The data on the operating cost per year and resale price of a machine having a cost price of Rs. 10,00 are given below:

Year	1	2	3	4	5	6	7
Operating Cost (Rs.)	1500	1990	2300	2900	3600	4500	5500
Resale Value (Rs.)	5000	2500	1250	600	400	400	400

Find the optimum period of replacement. (5)

SECTION - C (Do any two questions)

8. Maximize $z = 3x_1 - 2x_2 - x_3$ subject to constraints

$$4x_1 - 2x_3 \le 12$$

 $3x_1 + 8x_2 - 4x_3 \le 10$
 $-x_1 + 3x_2 + 3x_3 \le 7$
where $x_1, x_2, x_3 \ge 0$. (10)

9. The availability of number of units of a product at factories F₁, F₂, F₃ and F₄ is given; the requirement at warehouse w₁, w₂ and w₃ of that product is also given. The cost matrix giving cost of transportation per unit of product from the factory to warehouse is as given below. [P.]

[P.T.O.]

			4		890	
	W_1	W_2	W_3	Availability		
	F₁	4	7	50		
	$F_2 \mid 5$	7		100		
	$F_3 6$			70		
	F₄	5	4	30		
Red	uirement 50	80	100			
				its to be allocated		
	•			s to warehouses	(40)	
	ch gives least			•	(10)	
				ed by one service		
provider, arrivals follow Poissonian distribution and departure after service follow exponential						
distribution. On the average one customers						
arrives every to minutes and a customer						
-	ures on the avo dout:	erage	6 MII	nutes to be served.		
(i)		of cu	stome	ers in the system.		
(ii)	Average no.					
(iii)	Average time					
(iv)	Average time					
(v)	Probability th					
. ,	in the system.					
(vi)	Probability that the customer in served on arrival.					
(vii)	Utilization fac	(10)				
11. (a)		•		nce and scope of		
	operation		earc	h in modern	(F)	
41.3	managemen				(5)	
(b)	•			peration Research raluable in aiding		
	executive de			aluable ili alullig	(5)	
			-		. ,	