[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2064)

14615

B. Tech 2nd Semester Examination Applied Physics-II (O.S.) AS-1007

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Candidates are required to attempt five question in all selecting one question from each of the section A, B, C & D of the question paper and all subparts of the questions in Section-E. Use of non-programmable calculator is allowed.

SECTION - A

- 1. (a) What are Miller Indices? Derive formula for the distance between two adjacent planes in a cubic crystal. (10)
 - (b) State and explain Bragg's law of X-ray diffraction. (5)
 - (c) Find packing fraction of body centred cubic structure. (5)
- 2. (a) Derive an expression for Fermi energy and density of states of a free electron gas in three dimensions. (10)
 - (b) What is free electron gas model of metals? Which properties of solids are explained by free electron gas model. (10)

SECTION - B

3. (a) Discuss Kronig-Penny model for electron energy in solids and show how it explains the forbidden bands. (12)

14615/1650 [P.T.O.]

2 14615

(b) Prove that the effective mass of an electron in an energy

bend is given by
$$m^* = \frac{\hbar^2}{d^2 E / dk^2}$$
 (8)

- 4. (a) On the basis of band theory of solids, distinguish between metals, insulators and semiconductors. (10)
 - (b) What are Brillouin zones. Derive an expression for Brillori zone for bcc lattice. (10)

SECTION - C

- 5. (a) What is photoconductivity? How does it arise? Mention a few applications of the phenomenon. (10)
 - (b) Define photovoltaic effect. How this effect can explain the working of photovoltaic cells. (10)
- 6. (a) Explain the origin of diamagnetism in materials. Obtain an expression for diamagnetic susceptibility using the Langevin's theory. (10)
 - (b) Give difference between type I and type II super conductors using the Meissner effect. Discuss one application of super-conductivity. (10)

SECTION - D

- 7. (a) What are Einstein's A and B coefficients? Show that in the optical region the number of spontaneous emission far exceeds the number of stimulated emission. (10)
 - (b) Write short notes on population inversion and quality factor. (5+5=10)
- 8. (a) What is an optical fibre? Give basic principal of optical fibre communication. How are optical fibres classified on the basis of mode and refractive index profile? (12)
 - (b) What are advantages of optical fibres? (8)

3	14615
SECTION - E	

9.	Explain in Brief:			
	(i)	What is the cause of hydrogen bonding?	(1½)	
	(ii)	In diamond crystal structure, what is the number of neighbours?	earest (1½)	
	(iii)	Define Fermi energy.	(1½)	
	(iv)	Differentiate between thermionic emission photoelectric emission.	and (1½)	
	(v)	What do you mean by forbidden energy gap?	(1½)	
	(vi)	How does fermi energy vary with temperature?	(1½)	
	(vii)	Explain photoluminescence.	(1½)	
	(viii)	Differentiate between paramagnetism ferromagnetism.	and (1½)	
	(ix)	Define magnetisation and susceptibility.	(1½)	
	(x)	Do you think energy conservation is violated in a LASER? (1½)		
	(xi)	Which property of a LASER beam make it useful in IC	BMs? (1½)	
	(xii)	A laser beam has a band width of 2800Hz. Fir coherence length.	nd its (2)	
	(xiii)	What is dispersion in optical fibres?	(1½)	