B. Tech 6th Semester Examination

Compiler Design

CS-6003

Time : 3 Hours

Max. Marks : 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note : Attempt one question form each section A, B, C and D. Section E is compulsory.

SECTION - A

1. A cross compiler is one that runs on a machine to generate target code for another machine. Identify a few cases where such a cross compiler will be useful. (20)

2. What is the structure of a compiler? Specify the role of lexical analyzer in compiler design. (20)

SECTION - B

3. Construct the operator precedence parser for the following grammar:

\[
S \rightarrow (L)a \\
L \rightarrow L, S | S
\]

Show the parsing of the string "(a, ((a,a),(a,a)))" using the parser constructed. (20)
4. Consider the following grammar

 \[E \rightarrow E + T | T \]
 \[T \rightarrow T * F | F \]
 \[F \rightarrow (E) | \text{id} \]

 Construct an equivalent grammar with no left recursion. \(20\)

SECTION - C

5. What is the role of intermediate code generation in overall compiler design? Show the annotated parse tree and code generation process for the following, arithmetic expression:
 \[a + (b - c) * d \]

6. Show how the expression \(x - 2xy\) might be translated into an abstract syntax tree, one address code, two-address code, and three address code. \(20\)

SECTION - D

7. Specify the necessary and sufficient conditions for performing:

 (a) constant propagation
 (b) dead code elimination
 (c) loop optimization \(20\)

8. Describe the structure of a Lex program, and clearly mention the steps involved in translating, compiling and executing a Lex program. \(20\)

SECTION - E

9. (a) What is the importance of look-ahead operator in lexical analysis phase.

 (b) Describe the steps involved in “Boot”.
(c) Draw the parse tree for an arithmetic expression a*(b+c).

(d) What do you mean by LR(1) parsing?

(e) Translate the arithmetic expression a*(b+c) into postfix notation.

(f) What is type system? Discuss static and dynamic checking of types.

(g) Name various machine-independent code optimization techniques.

(h) How addressing modes can be used for reducing the memory access time?

(i) Explain organizing techniques for searching in a symbol table.

(j) Differentiate between macros and functions? (10×2=20)