[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2064)

14657

B. Tech 4th Semester Examination Computer Based Numerical Analysis (O.S.) AS/ME-4004

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions selecting one from each section. Section E is compulsory.

SECTION - A

			3	ECTIO	ч - А			
1.	(a)	From the following table estimate the number of students who obtained marks between 75 and 80. (10)						
		Marks		30-40	40-5	0 50-6	0 60-70	70-80
		No of stude	ents	31	42	51	35	31
	(b)	Using Stirling formula find y(12.2) (10						
		x°	10	11		12	13	14
		10 ⁵ y(x)	23967	7 280	60 3	31788	35209	38368
2.	(a)	Find the expression for velocity in terms of time from following data:						
		time 't'	0		1	3	4	
		velocity 'v'	21	1	15	12	10	
		Hence find acceleration at t = 4 and distance moved in 4 seconds. (10)						

14657/1000 [P.T.O.]

2 14657

(b) Define (i) forward (ii) backward difference operator. Hence prove that

$$hD = log (1 + \Delta) = -log (1 - \nabla) = sinh^{-1} (\mu \delta)$$

where symbols have usual meaning. (10)

SECTION - B

- 3. (a) Prove that Bisection method is always convergent. (10)
 - (b) Solve the system of equations 10x 2y 3z = 205, -2x y + 10z = 120 and -2x + 10y 2z = 15 using relaxation method. (10)
- 4. (a) Derive iteration formula of Newton Raphson method & hence show that it has quadratic rate of convergence.

 (10)
 - (b) Solve $\cos x = 3x 1$ correct to three decimal places using iteration method. (10)

SECTION - C

5. (a) Find the value of f'(x) at x = 3.5 from data given below:

- (b) Find value of $\int_{0}^{1} \frac{dx}{1+x^{2}}$ with 12 strips using Simpson's $\frac{3}{8}$ rule. (10)
- 6. (a) Find the value of $\int_0^1 \frac{dx}{1+x}$ using trapezoidal Rule with $h = \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$ then by Romberg method. (10)

14657

(b) Using Newton interpolation formula prove that

$$D = \frac{1}{h} \log(1 + \Delta) = -\frac{1}{h} \log(1 - \nabla)$$
 (10)

SECTION - D

3

7. (a) Find the solution of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ correct to 2 decimal places over grid below: (10)

- (b) Find the finite difference equation corresponding to parabolic equation by Schmidt method. (10)
- 8. (a) Use Crank Nicolson's method to solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ for two step in time

$$u(x, 0) = 0$$
 $u(0, t) = 0$ and $u(l, t) = 200t$ (10)

[P.T.O.]

(b) Find the solution of $u_{xx} + u_{yy} = 0$ over square mesh with boundary values as shown (10)

SECTION - E

- 9. Each part carries 2 marks:
 - (a) State convergence condition of iteration method to solve non-linear equations.
 - (b) State the convergence condition of Gauss Seidal method.
 - (c) Prove that $e^{hD} = E = 1 \Delta$
 - (d) State Stirling interpolation formula and its applications.
 - (e) Find the expression for $\frac{dy}{dx}$ using Newton's forward difference interpolation formula.
 - (f) Find the value of $\int_0^1 \frac{d}{1+x^2}$ using Trapezoidal rule using 5 strips.
 - (g) Find the finite difference equation corresponding to Laplace equation.
 - (h) Explain complete pivoting
 - (i) Find the root of $x \log_{10} x = 1.2$ between 2 and 3 if exists.
 - (j) Prove that Divided Differences are symmetric.