[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2064)

14844

MCA 2nd Semester Examination Discrete Mathematics (N.S.) MCA-203

Time: 3 Hours Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all selecting one question from each of Sections A, B, C and D. Question no. 9 in Section E is compulsory.

SECTION - A

- 1. (a) Show that $\sim (pV(\sim p\Lambda q))$ and $\sim p\Lambda \sim q$ are logically equivalent, where $\sim p$ is the negation of p. (6)
 - (b) Define tautology. Show that $(p\Lambda q) \rightarrow (pVq)$ is a tautology. (6)
- 2. (a) Define principal conjunctive normal form. Obtain the principal conjunctive normal form of $(p \Lambda q)V(\sim p \Lambda r)$ (6)
 - (b) Prove that the argument given below is a valid argument

$$p \to (q \to r)$$

$$\sim q \to \sim p$$

$$p$$

$$\therefore r$$
(6)

14844/130 [P.T.O.]

SECTION - B

- 3. (a) Define equivalence relation. If R is the relation on N×N defined by (a, b) R(c, d) if and only if a + d = b + c, show that R is an equivalence relation. (6)
 - (b) Define Lattice and chain. Prove that every chain is a distributive lattice. (6)
- 4. (a) Define Boolean Algebra. Establish the following relation in boolean algebra.

$$(a+b)(\overline{b}+c)+b.(\overline{a}+\overline{c})=a.\overline{b}+a.c+b$$
 (6)

(b) Write the function which represent the circuit shown in the figure and simplify. (6)

SECTION - C

- 5. (a) Define Tree and Cut set. Prove that every cut set in a connected graph G must contain at least one branch of every spanning tree. (6)
 - (b) Define Spanning Tree. In the given graph G, find all spanning tree and then find which is minimal spanning tree? (6)

3 14844

(6)

- 6. (a) Show that $K_{3,3}$ satisfies inequality $e \le 3v 6$, but it is non-planar, where $K_{3,3}$ is bipartite graph. v is number of vertices and e is number of edges of graph. (6)
 - (b) Show that the graph shown in the figure has no Hamiltonian cycle but the graph has 9 Hamiltonian path.

Figure

SECTION - D

- 7. (a) Given $a_n = a_{n-1} + 2a_{n-2}$, for n = 3, 4,... with $a_1 = 1$ and $a_2 = 3$. Find a formula for a_n . (6)
 - (b) Find the general solution of $a_r 7a_{r-1} + 10a_{r-2} = 7.3^r, \quad r \ge 2. \tag{6}$
- 8. (a) Define group. Show that the set N of all natural numbers 1, 2, 3, 4,....is not a group with respect to addition. (6)
 - (b) Prove that the set G = {0, 1, 2, 3, 4,} is a ring with respect to the operation of addition and multiplication modulo 5.

 (6)

SECTION - E

- 9. (a) Define biconditional statement in mathematical logic.
 - (b) Define principal Disjunctive normal form.

[P.T.O.]

- (c) Define predicate.
- (d) Define transitive relation.
- (e) In Boolean Algebra minimize the expression $\overline{AB} + \overline{A} + AB$.

4

- (f) Draw the circuit of x.(y+z)
- (g) Define rooted tree.
- (h) Find the maximum possible height of a binary tree with 13 vertices.
- (i) Define Eulerian circuit.
- (j) Define linear recurrence relation with constant coefficients.
- (k) Solve the recurrence relation:

$$a_{n+2} - 3a_{n+1} + 2a_n = 0$$

(I) Define fields. $(1\times12=12)$