[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2064)

14671

B. Tech 4th Semester Examination

Electrical Measurements & Measuring Instruments (O.S.) EE-4005

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Question Paper consists of five sections A, B, C, D & E. Section E is compulsory. Attempt five questions in all selecting one question from each of the sections A, B, C & D and all the subparts of the question in section E. Use of non-programmable calculator is allowed.

SECTION - A

- 1. (a) What are different types of errors common to measurements? Describe in detail.
 - (b) Give a detailed description of different types of forces commonly needed for satisfactory operation of electromechanical indicating instruments. (10+10=20)
- 2. (a) What do you understand by gravity control and spring control essentially used in measuring instruments? Explain in detail with the help of suitable diagram.
 - (b) What do you understand by absolute standards? What is their importance? Give broad classification of these standards. (10+10=20)

14671/450 [P.T.O.]

2 14671

SECTION - B

- 3. (a) Discuss the working principle of moving iron type instruments. Derive general torque equation for these instruments.
 - (b) In case of an moving iron ammeter, the range of the instrument is to be extended from 0-10 A to 0-75 A by using a shunt. The resistance and inductance associated with the instrument are $0.1\,\Omega$ and $60\,\mu\text{H}$, respectively. Calculate the constants of shunt required for this extension. If the shunt is made non-inductive and the combination reads correctly on d.c., find out the full scale error at frequency 50 Hz. (10+10=20)
- 4. (a) Explain the method of extending the range of moving iron instruments using multipliers.
 - (b) What are electrostatic instruments? Derive force and torque equations of electrostatic instruments.

(10+10=20)

SECTION - C

- 5. (a) Explain in detail the theory of electrodynamometer wattmeter. What are the common errors in these wattmeters?
 - (b) Describe light load, over-load, voltage and temperature compensation schemes in case of single phase induction type energy meters. (10+10=20)
- 6. (a) Explain the working of electro-resonance type frequency meters. Draw and explain the phasor diagrams under different power factor conditions.
 - (b) Explain the constructional details and working of single phase electrodynamometer power factor meter.

(10+10=20)

3 14671

SECTION - D

- 7. (a) Explain Kelvin double bridge method of measurement of low resistances. Also derive the bridge balance condition for Kelvin double bridge method.
 - (b) Explain Hay's bridge for measuring unknown inductance. Give its advantages and disadvantages over the Maxwell's inductance capacitance bridge. (10+10=20)
- 8. (a) The four arms of a bridge are given as follows:

Arm AB: an imperfect capacitor C_1 with an equivalent series resistance of r_1 ohm.

Arm BC: a non-inductive resistance R₃.

Arm CD: a non-inductive resistance R₄.

Arm DA: an imperfect capacitor C_2 with an equivalent series resistance of r_2 in series with a resistance R_2 .

A supply of 450 Hz is given between terminals A & C and the detector is connected between B & D. At balance condition R $_2$ = 4.8 Ω , R $_3$ = 2000 Ω , R $_4$ = 2850 Ω , C $_2$ = 0.5 μ F and r $_2$ = 0.4 Ω . Calculate the value of C $_1$ and r $_1$ and also the dissipating factor of this capacitor.

(b) What is a Megger? Give detailed description of construction and its principle of operation with the help of suitable diagram. (10+10=20)

SECTION - E

9. (a) Resistance of a circuit is measured by observing the current flowing and power fed into the circuit. The limiting errors in measurement of power and current are ±1.5% and ±2.5%, respectively. Find out limiting error in the measurement of resistance.

[P.T.O.]

- (b) Compare recording and indicating type instruments.
- (c) Distinguish between primary and secondary standards.
- (d) What are the general requirements for a material to be used for shunts and multipliers?
- (e) What is the necessity of using shunt and series magnets in case of single phase induction type energy meters?
- (f) What do you understand by phantom loading?
- (g) What are the disadvantages of moving iron type power factor meters?
- (h) What do you understand by Wagner earth device? Explain in brief.
- (i) Why does De Sauty's bridge give poor results for dissipation factor measurement?
- (j) What is the role of shading bands in case of single phase induction type energy meters? (10×2=20)