[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2064)

14640

B. Tech 4th Semester Examination Electronic Device Modelling (N.S.)

EC-223

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question from each of the Sections A, B, C & D. Section E is compulsory.

SECTION - A

- 1. (a) Taking the example of CE amplifier, explain the criterion for selection of a suitable operating point and factors affecting its stability. Hence define stability factor. (10)
 - (b) In a fixed biasing circuit, determine I_B , I_C and V_{CE} if transistor is of silicon, V_{CC} = 10V, R_B = 2.5 $M\Omega$, R_C = 15 $k\Omega$ and β = 90. (10)
- 2. (a) Explain the working of a JFET. Define the parameters of a JFET and develop its equivalent circuit. (10)
 - (b) Describe the constructional details of UJT. Sketch its V.I. characteristics and explain its operation. Describe the function of a relaxation oscillator using UJT with waveform. (10)

SECTION - B

3. (a) Draw the circuit diagram of an stable multivibrator. Justify that it is a two stage RC coupled amplifier using feedback. How does it give a square wave? (10)

14640/800 [P.T.O.]

2 14640

- (b) Differentiate between the monostable and bistable multivibrator. (10)
- 4. (a) What is LED? Give its principle of working, construction, circuit symbol, merits, demerits and applications. (10)
 - (b) What is LCDs? In what respect LCDs are advantageous over LEDs? Give their drawbacks in comparison to LEDs and applications. (10)

SECTION - C

- 5. (a) Design a combinational circuit that gives a binary output equal to the square of a binary coded decimal numbers 0 through 9. (10)
 - (b) Give a ROM circuit to realize this function. (10)
- 6. (a) Explain how a J-K flip flop can be converted into a D-flip-flop. (10)
 - (b) Design an exclusive-OR circuit using NAND and NOR gates. (10)

SECTION - D

- 7. (a) What is a ripple counter? Draw the logic diagram of a MOD-10 Count-up ripple counter using count reset.(10)
 - (b) Explain the working of serial in serial out shift register with logic diagram and waveforms. (10)
- 8. (a) Consider the NAND implementation of the function F = (AB)' + AD shown in Fig. 1. Assuming that all gates have the same time delays draw a logic microtiming diagram for the case where A changes while B=D=1.

(10)

3 14640

Fig. 1

(b) For the circuit in above problem, draw the K-map, add a hazard covering to eliminate the glitch, and discuss its impact on the hardware. (10)

SECTION - E

- 9. (a) Write down the law of mass action.
 - (b) Draw the equivalent circuit of diode.
 - (c) How is a P-N junction diode tested?
 - (d) How α and β are related from each other?
 - (e) Why LCDs are not operated from ac supply of frequency lower than 25 Hz and higher than 50 Hz?
 - (f) What is a multivibrator?
 - (g) How do square wave generators differ from pulse generators?
 - (h) What is Boolean Algebra?
 - (i) What is Karnaugh map?
 - (j) What is a state table? (2×10=20)