[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2064)

14676

B. Tech 4th Semester Examination Electronic Logic Circuit Design (O.S.) EC-4003

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all selecting one question each from sections A, B, C and D. Section - E is compulsory.

SECTION - A

- 1. (a) Design a code converter which converts BCD code into excess-3 code..
 - (b) A 'MS' flip-flop has two inputs M and S. Input M behaves like a J and S behaves like the compliment of K-input of J-K flip-flop
 - (i) Tabulate the characteristics table of the flip-flop.
 - (ii) Tabulate the excitation table.
 - (iii) Show that by connecting the two inputs together, one obtains a D flip flop. (10+10=20)
- 2. (a) Differentiate between sequential and combinational circuits. Explain the various classifications of switching circuits.

14676/900 [P.T.O.]

(b) Design a minimal, three output contact network to realize the functions shown below. Ten transfer contacts are sufficient.

T1(w, x, y, z) =
$$\Sigma$$
(0, 1, 2, 4, 8)
T2(w, x, y, z) = Σ (3, 5, 6, 9, 10, 12)
T3(w, x, y, z) = Σ (7, 11, 13, 14, 15) (10+10=20)

SECTION - B

- 3. (a) Design a sequential circuit with two D flip flops, A and B, and one input x. When x = 0, state of the circuit is same. When x = 1, the circuit goes through the state transitions from 00 to 01 to 11 to 10 back to 00, and repeats.
 - (b) Design a Mod-10 asynchronous counter using JK flip flops. (10+10=20)
- 4. (a) Explain finite state model. What are the capabilities of finite state machine?
 - (b) For each of the machines shown in table 1 and 2, find a minimum state reduced machine containing the original one.

Table 1

PS	NS, z		
	I 1	12	13
Α	C, 0	E, 1	_
В	C, 0	E,-	1
С	В,-	C, 0	А,-
D	B, 0	С,-	E,-
E	_	E, 0	А,–

Table 2

PS	NS, z		
	x=0	x=1	
Α	B, 1	H, 1	
В	F, 1	D, 1	
С	D, 0	E, 1	
D	C, 0	F, 1	
Е	D, 1	C, 1	
F	C, 1	C, 1	
G	C, 1	D, 1	
Н	C, 0	A, 1	

(10+10=20)

3 14676

SECTION - C

- A sequential circuit has two inputs, x₁ and x₂, and two outputs z₁ and z₂, is to be designed so that z_i (for i=1,2) takes on the value 1 if and only if x_i was the input that changed last.
 - (a) Find a minimum-row reduced flow table and a valid assignment.
 - (b) Assuming that all inputs are available in an uncomplemented as well as complemented form, show a realization using NAND gates. (20)
- 6. What are the advantages of asynchronous sequential circuits? What are pulse mode circuits? With the help of example describe the designing of pulse mode circuit. (20)

SECTION - D

- 7. (a) Explain the methods to design hazard free asynchronous circuits.
 - (b) What are advantages of modularity? What are the conditions for serial and parallel decomposition.

(10+10=20)

8. Design a hazard free asynchronous sequential circuit with two input x1 and x2 and two outputs G and R, which is to behave in the following manner. Initially, both input and both outputs are equal to 0. Whenever G =0 and either x1 or x2 becomes 1, G turns on i.e. becomes 1. When the second input becomes 1, R turns on. The first input that changes from 1 to 0 turns G off. R turns off when G is off and either input changes from 1 to 0.

(20)

[P.T.O.]

4 14676

SECTION - E

- 9. (a) What are Mealy and Moore type machines?
 - (b) Realize the given T flip flop from a D flip flop.
 - (c) Convert a D-FF into JK-FF.
 - (d) What are the limitations of finite state machine?
 - (e) Tabulate the excitation tables of JK and SR flip flop.
 - (f) With the help of example explain the term glitch.
 - (g) Draw the state diagram of modulo-8 binary counter.
 - (h) Write down the main steps for the synthesis of synchronous circuits.
 - (i) Design a 3-bit ring counter.
 - (j) Express the function Y= A+BC in Canonical POS form. $(2\times10=20)$