[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2064)

14840

MCA 1st Semester Examination Mathematics (N.S.) MCA-104

Time: 3 Hours Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question from each of the sections A, B, C & D, and all the subparts of the question in Section E. Use of scientific calculators is not allowed. All questions carry equal marks.

SECTION - A

- (a) Show that the set D₂₀ of all the positive divisors of 20 form a lattice with the relation of divisibility. Also represent the lattice D₂₀ by a Hasse diagram.
 (6)
 - (b) Simplify the following Boolean expression[a(a+b)+(b'+a)b]'(6)
- 2. (a) The probability distribution of a random variable x is:

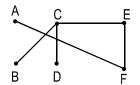
$$f(x) = k \sin \frac{nx}{5}, 0 \le x \le 5$$
. Determine the constant k and obtain the median. (6)

obtain the median.

(b) Construct an input/output table for the Boolean function defined by f(a, b) = (a.b)' + b.(6)

14840/000 [P.T.O.]

SECTION - B


3. (a) Show that the roots of the equation $z^2 + \alpha z + \beta = 0$, where α , β are complex numbers, are real if

$$(\overline{\alpha} - \mathbf{a}) (\alpha \overline{\beta} - \overline{\alpha} \beta) = (\beta - \overline{\beta})^{2}.$$
 (6)

(b) If $z_k = cos \frac{\pi}{2^k} + i sin \frac{\pi}{2^k}$, $k = 1, 2, 3, \ldots$ then show that

$$Z_1 Z_2 Z_3 \dots \infty = -1 \tag{6}$$

- 4. (a) Consider the following graph and find the followings:
 - (i) All simple paths from B to F.
 - (ii) All cut points.
 - (iii) All cycles.
 - (iv) All brides.

- (v) Subgraph H of G generated by V' = {B, C, D, E}. (6)
- (b) Show that V E + R = 2 for any connected planer graph, where V, E and R are the number of vertices, edges and regions of the graph respectively. (6)

SECTION - C

- 5. (a) Consider the system kx+y+z=1, x+ky+z=1, x+y+kz=1. Use determinants to find those values of k for which the system has a unique solution. (6)
 - (b) Suppose $v_1, v_2,...,v_n$ are non zero eigen vectors of T belonging to distinct eigen values $\lambda_1, \lambda_2,...,\lambda_n$. Show that $v_1, v_2,..., v_n$ are L.I. (6)

6. (a) If
$$x^x y^y z^z = c$$
, show that at $x=y=z$, $\frac{\partial^2 z}{\partial x \partial y} = (x \log e x)^{-1}$.

(6)

(b) Check the convergence of
$$\int_{-\infty}^{\infty} xe^{-x^2} dx$$
. (6)

SECTION - D

- 7. (a) Apply Newton-Raphson method to determine the root of the equation $f(x) = x^3 5x + 1 = 0$. (6)
 - (b) Find the remainder of the Simpson's 3/8 rule

$$\int_{x_0}^{x_3} f(x) dx = \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right]$$
 for

equally spaced points $x_i = x_0 + ih$, i = 1, 2, 3. (6)

- 8. (a) Discuss the 'secant method' for the solution of non linear algebraic equations along with its geometrical significance. (6)
 - (c) Solve the equations

$$x_1 + x_2 + x_3 = 6$$
, $3x_1 + (3 + \epsilon)x_2 + 4x_3 = 20$,

 $2x_1 + x_2 + x_3 = 13$, using the Gauss elimination method,

where
$$\in$$
 is small such that $1 \pm \epsilon^2 \approx 1$. (6)

SECTION - E

- 9. (a) Write the logical expression for the following sentence: "You can access the internet from campus only if you are a computer science major or you are not a freshman".
 - (b) Define a 'partial order relation'.
 - (c) If $z_1 = -3$ and $z_2 = 4i$, show that Arg $(z_1 z_2) \neq Arg(z_1) + Arg(z_2)$.

[P.T.O.]

- (d) In how many ways can two adjacent squares be selected from an 8×8 chessboard?
- (e) Find x and B if B = $\begin{bmatrix} 4 & x+2 \\ 2x-3 & x+1 \end{bmatrix}$ is symmetric.
- (f) Evaluate $\int_{-1}^{1} \sqrt{\frac{1+x}{1-x}} \, dx.$
- (g) Write the geometrical significance of bisection method.
- (h) A single letter is selected at random from the word 'probability'. Find the probability that it is a vowel.
- (i) Evaluate $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$
- (j) Find both the maximum and minimum values of x^3-2x^2-2x-4 on the interval [0, 3]. (1.2×10=12)