[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2064)

14622

B. Tech 4th Semester Examination Numerical Methods for Engineers (N.S.)

NS-207

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all selecting one question from each of sections A, B, C and D. Question 9 in Section E is compulsory. All questions carry equal marks.

SECTION - A

- 1. (a) Find a root of an equation $x^3 + 2x 2 = 0$ by using iteration method, correct up to three decimal places.
 - (b) Discuss Newton Raphson method. Also show that the rate of convergence of Newton Raphson method is quadratic. (10+10=20)
- 2. (a) Solve the following system of equations by Gauss-Jordan elimination method

$$x_1 + x_2 + x_3 = 3$$
; $2x_1 + 3x_2 + x_3 = 6$; $x_1 - x_2 - x_3 = -3$.

(b) Solve the following system of linear equations by Jacobi's method correct up to four decimal places:

$$27x + 6y - z = 54$$
; $6x + 15y + 2z = 72$; $x + y + 54z = 110$. (10+10=20)

SECTION - B

3. (a) If π is approximated as 3.14 instead of 3.1456, find the absolute, relative and percentage error. Also explain when relative error is a better indicator of the accuracy of a computer than the absolute error.

14622/3900 [P.T.O.]

For the following table, find the interpolation polynomial using Lagrange's formula:

Х	0	2	4	8	
f(x)	3	8	11	18	(10+10=20)

4. (a) From the following table of values of x and f(x) determine the value of f(0.29) using Newton's backward interpolation formula.

	X	0.20	0.22	0.24	0.26	0.28	0.30
f(x)	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

Use the central difference interpolation formula of Bessel (b) to find the value of y at (i) x = 1.40 and (ii) x = 1.60 from the following table:

Х	1.0	1.25	1.5	1.75	2.0
У	1.0000	1.0772	1.1447	1.2051	2.2599

(10+10=20)

SECTION - C

5. (a) From the following table find the value of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at the point x = 1.5.

Χ	1.5	2.0	2.5	3.0	3.5	4.0
Υ	3.375	7	13.625	24	38.875	59

Use Newton's interpolation formula to find y when x = 1.85 and 2.4 from the data:

Х	1.7	1.8	1.9	2.0	2.1	2.2	2.3
y = e ^x	5.474	6.050	6.686	7.389	8.166	9.025	9.974

6. (a) Evaluate the integral $\int_{0}^{1} \frac{1}{1+x^2} dx$ using Simpson's 1/3 rule. Also compare the result with exact value.

(b) Use Newton's divided difference formula. Define f(x) as a polynomial in x from the following data:

х	– 1	0	3	6	7
f(x)	3	6	39	822	1611

(10+10=20)

SECTION - D

- 7. (a) Given $y' = x^2 y$, y(0) = 1. Find y(0.1), y(0.2) using Runge-Kutta method of (i) second order, (ii) 4^{th} order.
 - (b) Solve by Predictor-Corrector method, the differential equation $\frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 2 at x = 0.8, given that y(0.2) = 2.0933, y(0.4) = 2.1755, y(0.6) = 2.2493 (10+10=20)
- 8. (a) Use Taylor series method to obtain approximate value of y at x=0.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x, \ y(0) = 0.$
- 8. (b) Using Euler's method, solve for y at x=0.1 from $\frac{dy}{dx} = x + y + xy, y(0) = 1 \text{ taking step size h=0.025}.$ (10+10=20)

SECTION - E

- 9. (a) State intermediate value theorem.
 - (b) Write the Newton-Cotes Quadrature formula.
 - (c) Explain the rate of convergence.
 - (d) What are the limitations of iterative methods?
 - (e) Explain partial and complete pivoting.
 - (f) Give the difference between Regula-Falsi and Secant method
 - (g) Write a short note on Romberg integration.
 - (h) Give the advantage of Bisection method.
 - (i) Prove that (i) $\Delta = E\nabla = \nabla E = \delta E^{\frac{1}{2}}$ (ii) $E = 1 + \Delta = e^{hD}$
 - (j) Define absolute, relative and percentage errors.

 $(10 \times 2 = 20)$