[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2064)

14666

B. Tech 4th Semester Examination Numerical methods and Computer Programming (O.S.) AS(ID)-4001

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt Five question in all selecting one question from each of the section A, B, C, and D. Section E is compulsory, attempt all the subparts of this section.

SECTION - A

1. (a) Using Lagrange's Interpolation formula find f(a), given

x :	5	7	11	13	
f(x):	150	392	1452	2366	(10)

(b) By means of Newton's divided difference formula, find the value of f(8) and f(15) from the table

x :	4	5	7	10	11	13	
f(x):	48	100	294	900	1210	2028	(10)

2. (a) Interpolate the population of a town for the year 1974 using Gauss's backward formula, given that

Year: 1939 1949 1959 1969 1979 1989

Population 12 15 20 27 39 52
(in thousand): (10)

14666/1000 [P.T.O.]

2 14666

(b) Write a computer program in C/C++ for the Newton's forward Interpolation method. (10)

SECTION - B

- 3. (a) Using the Bisection Method, Compute a root of $x^3-x-1=0$ upto three decimal places in four stages. (10)
 - (b) Apply Newton's Raphson method to find a real root of the equation $3x = \cos x + 1$ (10)
- 4. (a) Solve the system of equations

$$27 x + 6y - z = 85$$

$$6x + 15y + 2z = 72$$

$$x + y + 54z = 110$$

(b) Using Relaxation method, solve the system of equations

$$10x - 2y - 3z = 205$$

$$-2x + 10y - 2z = 154$$

$$-2x - y + 10z = 120 \tag{10}$$

SECTION - C

- 5. (a) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ using Simpson's 1/3 and Weddle's rules. (10)
 - (b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$ using Romberg's Integration in two steps taking h = 0.5 (10)

3 14666

6. (a) Evaluate $\frac{dy}{dx}$ at x = 1.5

x: 0 .5 1 1.5 2

y: 0.3989 0.3521 0.2420 0.1295 0.0540 (10)

(b) Write a computer program in C to approximate definite Integral with Simpson's 1/3 Rule. (10)

SECTION - D

- 7. (a) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in 0 < x < 5, $t \ge 0$ given that u(x, 0) = 20, u(0, t) = 0, u(5, t) = 100. Compute u for the time-step with h = 1 by Cranck-Nicholson's Method. (10)
 - (b) Write the finite difference approximation to solve partial differential equation. (10)
- 8. (a) Solve the Laplace equation over the square region, satisfying the boundary conditions.

$$u(0, y) = 0, o \le y \le 3$$

 $u(3, y) = 9 + y, 0 \le y \le 3$
 $u(x, 0) = 3x, 0 \le x \le 3$
 $u(x, 3) = 4x, 0 \le x \le 3$ (10)

(b) Solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ under conditions

u(0, t) = u(1, t) = 0, and

 $u(x, 0) = \sin \pi x, 0 \le x \le 1 using$

Schmidt method, by taking h = 0.2 and k = 0.02 (10)

[P.T.O.]

4

14666

SECTION - E

- 9. (a) If $f(x) = \frac{1}{x^2}$, find f(a, b) and f(a, b, c) by using divided difference.
 - (b) Find the polynomial which takes the values:

x: 0 1 2 y: 1 2 1

- (c) State the iterative formula for Regula Falsi method to solve f(x)=0.
- (d) Write the iterative formula of Newton's Raphson Method to find \sqrt{N} .
- (e) Write a sufficient condition for Gauss-Seidal method to converge.
- (f) State Romberg's method Integration formula to find the value of $I = \int_{a}^{b} f(x)dx$.
- (g) Write a computer program in C for Newton's Raphson method.
- (h) Write down the standard five point formula to solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2} = 0.$
- (i) Find $\frac{dy}{dx}$ at x = 10, for the following data:

x: 2 4 6 8 10 y: 6 54 134 246 390

(j) Evaluate $\left(\frac{\Delta^2}{E}\right) e^x \left(\frac{Ee^x}{\Delta^2 e^x}\right)$ (2×10=20)