[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2064)

14854

MCA 4th Semester Examination

Operational Research

MCA-403

Time: 3 Hours Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Candidates are required to attempt five questions in all selecting one question from each of the sections A, B, C and D and all the subparts of the questions in section E.

SECTION - A

1. Solve, Maximize

$$Z = 5x_1 - 2x_2 + 3x_3$$

subject to constraints

$$2x_{1} + 2x_{2} - x_{3} \ge 2$$

$$3x_{1} - 4x_{2} \le 3$$

$$x_{2} + 3x_{3} \le 5 \text{ and } x_{1}, x_{2} \ge 0$$
(12)

2. Use two phase simplex method to maximize $Z = 5x_1 + 3x_2$ subject to constraints

$$2x_1 + x_2 \le 1$$

 $x_1 + 4x_2 \ge 6$ and $x_1, x_2 \ge 0$ (12)

14854/80 [P.T.O.]

SECTION - B

3. The following table lists the jobs of a network along with their time estimates

Jobs:	1-2	1-3	2-4	3-4	4-5	3-5
Optimistic time:	2	9	5	2	6	8
Pessimistic time:	14	15	17	8	12	20
Most likely time:	5	12	14	5	6	17

- (a) Draw the network.
- (b) Calculate the expected duration of each activity.

4. Use duality to solve the following linear programming problem

Maximize
$$Z = 2x_1 + x_2$$

Subject to $x_1 + 2x_2 \le 10$
 $x_1 + x_2 \le 6$
 $x_1 - x_2 \le 2$
 $x_1 - x_2 \le 1$ and $x_1, x_2 \ge 0$ (12)

SECTION - C

5. Determine a basic feasible solution to the following transportation problem

	D_1	$D_{\!\scriptscriptstyle 2}$	D_3	$D_{\scriptscriptstyle{4}}$	Available
O ₁	6	1	9	3	70
O_2	11	5	2	8	55
O_3	10	12	4	7	90
Requiremen	t 85	35	50	45	(12)

3 14854

- 6. (a) What is a balanced transportation problem? What are its applications? (6)
 - (b) What is a stepping stone transportation problem? (6)

SECTION - D

7. Solve the game whose pay off matrix is given by

Player B B_1 B_2 B_3 B_4 5 -10 9 0 6 7 8 1 7 8 15 1 3 4 _1 4 A_{4}

Player A

(12)

- 8. (a) What are types of Inventory? Why they are maintained? Explain the various costs related to inventory. (6)
 - (b) Describe briefly the EOQ concept. What are its limitations? Discuss. (6)

SECTION - E

- 9. (a) Briefly describe the advantages of operational research.
 - (b) What is the use of MODI method?
 - (c) State the rule of dominance in game theory.
 - (d) What is significance of float in C.P.U.?
 - (e) Give an example of first come, last served.
 - (f) State two applications of a linear programming.
 - (g) What is a critical path?
 - (h) Explain ABC analysis. (8×1½=12)