[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2064)

14678

B. Tech 4th Semester Examination Pulse Shaping and Wave Generation (O.S.) EC-4005

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all selecting one question each from sections A, B, C and D. Section - E is compulsory.

SECTION - A

- 1. (a) What is meant by linear wave shaping? How high pass RC circuit act as an differentiator?
 - (b) Derive an expression for the output of a low-pass circuit excited by an exponential input.
 - (c) Find the cut off frequency of a low-pass circuit. (8+6+6=20)
- 2. (a) What is an avalanche diode? How it is different than pn junction. What is the effect of temperature on the working and avalanche break down?
 - (b) Explain the phenomenon of Latching in a transistor switch.
 - (c) Draw the collector waveform of transistor switch and indicate all the time intervals. What the factors that contributes the delay time of transistor switch?

(6+7+7=20)

14678/900 [P.T.O.]

2 14678

SECTION - B

- 3. (a) Classify different types of clipper circuits. Give their circuits and explain their operation with the aid of transfer characteristics.
 - (b) How the clipping circuits are used in non-linear wave shaping? Draw a circuit to transmit that part of a sine wave which lies -3V and +6V and explain its working.

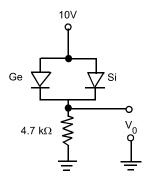
 (10+10=20)

(10:10-20)

- 4. (a) A 100V peak square wave with an average value of 0V and a period of 20ms is to be negatively clamped at 25V. Draw the input and output waveforms and necessary circuit diagram.
 - (b) What is negative clamping? Explain it with suitable circuit. Derive the relation between the tilts in the forward and reverse directions of the output of a clamping circuit excited by a square-wave input. (10+10=20)

SECTION - C

- 5. (a) Draw and explain the circuit diagram of integrated positive RTL NOR gate.
 - (b) Describe the various characteristics of logic families. Compare the RTL and DTL logic families in terms of Fan out, propagation delay, power dissipated per gate and noise immunity. (10+10=20)
- 6. (a) What are registers? Explain the circuit for dynamic shift register.
 - (b) Explain the circuit diagram of Direct coupled transistor logic. (10+10=20)


SECTION - D

7. (a) Show that an astable multivibrator can be used as a voltage to frequency converter. What is blocked condition in an astable multivibrator? How to overcome it?

- (b) With the help of a neat circuit diagram, explain the working of an emitter coupled monostable multivibrator. Draw and explain the base and collector waveforms of a monostable multivibrator. (10+10=20)
- 8. (a) Draw the circuit diagram of the unidirectional diode gate with more than two inputs and explain its operation.
 - (b) Draw the circuit diagram of a bidirectional sampling gate circuit and explain its working. (10+10=20)

SECTION - E

- 9. (i) Why clamping circuit is also known as D.C. inserter?
 - (ii) Draw response of high pass RC circuit to ramp waveform,
 - (iii) What is difference between high pass and low pass RL circuit?
 - (iv) Determine V_{out} for the ckt.

- (v) What is wired logic? Give some examples.
- (vi) Why RC circuit is preferred over RL circuit in wave shaping?
- (vii) Compare ac coupling and dc coupling in Multivibrator.
- (viii) What are the basic logic gates in digital systems?
- (ix) Why are RC circuits commonly used compared to RL circuits?
- (x) Explain the variation of saturation parameters of transistor with temperature? (2×10=20)