[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2064)

14681

B. Tech 4th Semester Examination Theory of Automata & Computation (O.S.) CS-4003

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt FIVE questions in all selecting one from each of the section A, B, C & D and the entire parts of section E.

SECTION - A

- 1. (a). Construct a Deterministic Finite Automata (DFA) for the language L = (a+b)* aabb. (10)
 - (b) Let r_1 , r_2 and r_3 be three regular expressions. Is the language associated with $(r_1 + r_2)r_3$ is same as language associated with $r_1r_3 + r_2r_3$? Justify your answer. (10)
- 2. (a) Construct a DFA equivalent to the following grammar:

 $S \rightarrow aS|bS|aA$

 $A \rightarrow bB$

 $B \rightarrow aC$

$$C \to \varepsilon$$
 (10)

(b) Describe various applications of finite automata. (10)

SECTION - B

3. (a) Describe the method of conversion from Moore machine to Mealy with suitable example. (10)

14681/550 [P.T.O.]

2 14681

(20)

	lemma theorem.	(10)
(a)	Discuss the limitations of finite state machines (FS	M). (10)
(b)	Briefly explain Arden's method for the conversion of into DFA with example.	of NFA (10)
	SECTION - C	
(a)	Consider a Finite State Machine (FSM) having at I states, and convert it into its Equivalent Push Machine (PDM).	
(b)	onvert the following grammar into Griebach Normal Form BNF):	
	$A \rightarrow aAa bAb a b aa bb$	(10)
(a)	Write a CFG for the language of all words of the a ^r b ^s c ^t where r, s, t,= 1, 2, 3, and s=2r+t.	form (10)
(b)	Determine whether the following grammar is ambi	guous
	A \rightarrow aAAb I bAAa I ϵ (abab is a string in L(G))	(10)
	SECTION - D	
(a)	Construct a Turing Machine that recognizes the se strings that contain an even no. of 1's.	t of all (10)
(b)	Differentiate between deterministic and non-determ Turing machines.	inistic 10
Disc	cuss the following:	

(a) Halting problem of Turing machine

(b) Unrestricted grammar

(b) Prove that $\{a^n\ b^n\ c^n\}$ is non context free using pumping

4.

5.

6.

7.

8.

3 14681

SECTION - E (Compulsory)

- 9. (a) What are the applications of unit productions?
 - (b) What are Type -2 grammars?
 - (c) List the various characteristics of regular expressions. ,
 - (d) What are the applications of Mealy machine?
 - (e) Define Myhill-Nerode theorem.
 - (f) Show that exponentiation function is primitive recursive function.
 - (g) What do you understand by Kleene's closure?
 - (h) List the limitations of Push down Automata. (8×2½=20)