[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2064)

14648

B. Tech 4th Semester Examination Theory of Automata Computation (N.S.)

IT-223

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Each question carries 20 marks. Attempt one question from each section. Section E is compulsory and carries 20 marks.

SECTION - A

1. (a) Explain the steps to convert NFA into DFA. Covert the following NFA into DFA

- (b) Differentiate between Finite state machine and finite automata. (20)
- 2. (a) Construct a DFA for following
 - (i) All strings that contain exactly four zero's
 - (ii) All strings that don't contain the substring 110.
 - (b) Construct the equivalent DFA for the NFA which accept the language (a/b)*abb. (20)

14648/70 [P.T.O.]

2 14648

SECTION - B

- 3. (a) Discuss the closure properties of regular languages.
 - (b) Using pumping lemma for regular sets prove that the language

L= $\{0^m \ 1^n \ 0^{m+n} \ | \ m \ge 1 \ \text{and} \ n \ge 1\}$ is not regular. (20)

- 4. (a) Discuss Myhill- Nerode Theorem.
 - (b) Define regular expression and show that

(1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)* (20)

SECTION - C

- 5. (a) Explain in detail the ambiguity in context free grammar.
 - (b) Convert the grammar S→ABb|a, A→aaA|B, B→bAb into Greibach Normal form (20)
- 6. (a) Convert the following into GNF

 $S \rightarrow XY1/0$ $X \rightarrow 00X/Y$ $Y \rightarrow 1X1$

(b) Construct the left linear grammar for $S\rightarrow abA$, $A\rightarrow baB$, $B\rightarrow aA|bb$. (20)

SECTION - D

- 7. (a) Construct a Turing machine to perform multiplication.
 - (b) Prove the equivalence of two-way infinite tape with standard Turing machine. (20)
- 8. (a) State the Halting problem of Turing Machines. Prove that the Halting problem of Turing machine over {0,1}* unsolvable.
 - (b) Describe Chomsky Hierarchy of grammars and indicate their recognizers. (20)

3 14648

SECTION - E

- 9. Write short notes on:
 - (a) Let $\Sigma = \{a,b\}$. Write regular expression for the set of all strings in Σ^* with no more than three a's.
 - (b) State the mathematical definition of DFA.
 - (c) Define Context Free grammar.
 - (d) What is configuration of a Turing machine?
 - (e) When do we say that a function is Turing computable?
 - (f) When do we say that a function is Primitive recursive?
 - (g) Define the class NP.
 - (h) State Pumping lemma for regular languages.
 - (i) Construct NFA equivalent to regular expression: (0+1)01.
 - (j) Define recursive sets. (2×10=20)