[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2123)

1318

B. Tech 1st Semester Examination Basic Electronics (O.S.) EC-1001

Time: 3 Hours Max. Marks: 100

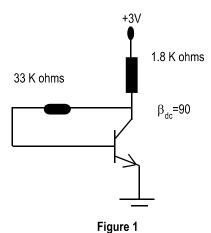
The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all, selecting one question each from section A, B, C & D. Section-E is compulsory.

SECTION - A

- (a) Draw and explain the working of bridge rectifier. Derive the equation for ripple frequency, and efficiency of the bridge rectifier.
 (10)
 - (b) Determine the germanium p-n junction diode current for the forward bias voltage of 0.22 volts at room temperature 25°C, with reverse saturation current of 1 mA. (10)
- 2. (a) Explain the process of avalanche break down. How it is different than Zener break down? (10)
 - (b) Describe the formation of depletion region in case of p-n junction diode with the help of energy band diagram. Derive the diode current equation.

SECTION - B


3. (a) Draw small signal low frequency h- parameter model for CE configuration and derive equation for (i) Current gain Ai, (ii) Voltage gain Vi. (10)

1318/1600 [P.T.O.]

- (b) Explain the VI characteristic of UJT. Describe the intrinsic stand-off ratio and its significance in case of UJT. (10)
- 4. (a) Describe the operation of MOSFET, in (i) Enhancement mode, and (ii) Depletion mode. (10)
 - (b) Draw the equivalent circuit of JFET. Explain the working and V-I characteristic of JFET. (10)

SECTION - C

- 5. (a) With the help of suitable circuit diagram, explain the working of a RC coupled amplifier. Derive expression for voltage gain of the amplifier. (10)
 - (b) Explain the principle of negative and positive feed back for voltage series feed back amplifier. Derive the expression for voltage gain in each case.
 (10)
- 6. (a) Determine the d.c. bias current and voltage for the d.c. bias circuit shown in figure 1. Also determine the stability factor of the bias circuit. Assume VBE = 0.7 volts. (10)

(b) Describe the effect of negative feed back on (i) Input resistance (ii) output resistance, and (iii) Bandwidth, in case of amplifier.

3 1318

SECTION - D

- 7. (a) Explain the working of photo transistor in details. (10)
 - (b) Describe the use of op-amp as (i) Adder and (ii) Comparator. (10)
- 8. (a) Explain how capacitors and resistors are fabricated in IC. (10)
 - (b) Draw the circuit diagram of op-amp in inverting and non-inverting configuration. Derive an expression of voltage gain for each case. (10)

SECTION - E

9. Attempt all parts:

- (a) What is the difference between AC and DC load line in case of transistors? What is the ideal position of operating point on a load line?
- (b) Draw small signal low frequency h- parameter model for common base amplifier.
- (c) Derive the equation for output resistance in case of negative feedback amplifier.
- (d) Draw and explain the frequency response of RC coupled amplifier.
- (e) Draw the integrator using op-amp, and derive the relationship between input and output.
- (f) Derive a relationship between α and γ in case of BJT's.
- (g) Draw the cross-section of depletion mode and enhancement mode n-channel MOSFET.
- (h) Describe diffusion and transition capacitance of p-n junction diode.
- (i) Describe the mechanism of Zener breakdown.
- (j) What is Fermi level? Draw the energy diagram for p and n type semiconductor, clearly showing the Fermi level.

 $(2 \times 10 = 20)$