[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2123)

1375

B. Tech 3rd Semester Examination Data Structure and Algorithm (O.S.) IT(ID)-3003

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Each question carries 20 marks. Attempt one question from each section. Section E is compulsory.

SECTION - A

1. How do you analyze complexity of an algorithm? Explain various notations used to define various complexities of algorithm.

(20)

- 2. (a) What is a linked list? How will you represent a link list into memory? How it is different from arrays?
 - (b) Explain the algorithm to delete a node with a given item of information in a singly linked list. (20)

SECTION - B

- 3. (a) Write an algorithm to give inorder traversal of binary tree.
 - (b) write algorithm and construct a heap for the following set of numbers :

4. Draw the binary tree T with node labels a, b, c, d, e, f and g for which the inorder and postorder traversals result in the following sequences.

Inorder a f b c d g e Postorder a f c g e d b

1375/600 [P.T.O.]

2 1375

(ii) Find the one way preorder threading of T drawn in (i) (20)

SECTION - C

The next three questions concern the directed graph described as follows.

 $V(G) = \{1,2,3,4,5,6,7,8\}$ $E(G) = \{(1,2),(1,5),(1,4),(2,3),(2,4),(3,1),(4,3),(5,4),(6,7),(6,8)(7,5),(8,6),(8,7),(8,4)\}$

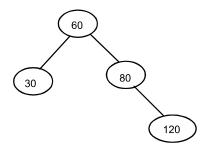
Note: here (4,3) means there is an directed edge from 4 to 3.

- (a) Show the complete set of adjacency lists for this graph. There is one adjacency list for each vertex.
- (b) Do a depth-first search of this graph, beginning at vertex1 and show DFS forest for this graph.
- (c) With the help of above information can you detect any cycle in this graph. Defend your answer. (20)
- 6. Write and explain algorithm for Breadth first Search in graph.

 Construct a graph of your choice and then apply BFS on that graph.

 (20)

SECTION - D


- 7. (i) A sorting method is said to be stable if at the end of the method, identical elements occur in the same order as in the original unsorted set. Is merge sort a stable sorting method? Support your answer properly.
 - (ii) Write algorithm for Insertion sort to sort elements in descending order and apply that on following sequence

8 5 7 3 2 1 6 (20)

- 8. (i) Write algorithm for binary search. What is its complexity?
 - (ii) What are various data structures that you can use for searching and sorting and how? (20)

SECTION - E

- 9. (i) Write algorithm for Sum of integers of single linked list.
 - (ii) Insert these keys 15, 32, 20, 9, 3, 25, 12, 1 into binary search one by one and Show the binary search tree after each insertion.
 - (iii) How a node is represented in "C"?
 - (iv) Find the number of comparison and interchanges if we want to alphabetize n=6 letters in "GRADES" using Bubble sort.
 - (v) Is the following tree an AVL tree? If not, convert that into an AVL tree. (5×4=20)

