[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2125)

15609

MCA 2nd Semester Examination Discrete Mathematics (NS) MCA-203

Time: 3 Hours

Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all selecting one question from each sections A, B, C and D. Section E is compulsory.

SECTION - A

- 1. (a) Show that $\left[s \rightarrow \left(\left(\left(\neg p\right) \land q\right) \land r\right)\right] \Leftrightarrow \neg\left[\left(p \lor \left(\neg (q \land r)\right)\right) \land s\right]$.
 - (b) Show that " $(p \land q) \rightarrow (p \lor q)$ " is a tautology, while " $((\neg p) \land q) \land (p \lor (\neg q))$ " is a contradiction. (6)
- 2. (a) Establish the validity of the argument

$$\begin{array}{c}
p \to q \\
(\neg r) \lor (\neg q) \\
\hline
r \\
\neg p
\end{array}$$
(6)

(b) Check, is the statement $((p \land q) \lor r) \land \rightarrow ((p \land q) \lor (\neg q))$ is in disjunctive normal form. (6)

[P.T.O.]

2 15609

SECTION - B

3. (a) Let (L,≤) be a lattice in which '.' And '+' denote the operation of meet and join respectively. Then

$$b \le c = \begin{cases} a.b \le a.c \\ a+b \le a+c \end{cases} \quad \forall a,b,c \in L$$
 (6)

- (b) Define complemented lattice. Show that lattice $(L_3, <_3)$ of 3-tupple of 0 and 1 is a complemented lattice. (6)
- 4. (a) Simplify the Boolean expression $Y = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$ (6)
 - (b) Construct NAND gate structure for the expression

$$Z = (\overline{A} + B)C + \overline{F} + DE$$
 (6)

SECTION - C

- 5. (a) Prove that connected graph has a spanning tree. (6)
 - (b) Define Minimal Spanning Tree. Show that minimum height of a binary tree on n vertices is [log₂(n+1)–1]. (6)
- 6. (a) A connected multi graph is Eulerian iff its edge set can be partitioned into cycles. (6)
 - (b) Explain Multi-graphs and weighted graphs with examples. (6)

SECTION - D

- 7. (a) Let (G,*) be a group and H is a non empty subset of G, then H is subgroup of G if and only if a,b∈H ⇒ a*b⁻¹∈H.
 - (b) A sub group H of group G is normal in G iff gH = Hg $\forall g \in G$. (6)

recurrence relation $a_n=2a_{n-1}-a_{n-2}$, $n\ge 2$, given that $a_0=3$ $a_1=-2$.	
Define ring. If Q be the set of all rational numbers and $'+'$ and $'."$ be two binary operations. Then discuss i $(Q, +,.)$ a ring or not?	s
SECTION - E	
Obtain conjunctive normal form of $p \rightarrow (q \land r)$. (2	2)
Construct truth table for conditional statement p \rightarrow q. (1)
Define the terms (i) Partially Ordered Set (ii) Linearl Ordered Set with examples. (1	-6
Define consensus method to simplify Boolean expression. The consensus of AB and A'C is (1	
Define Cut Set and Cut Edges with examples. (1)
Compare and define Euler Path and Hamiltonian Path. (1	
Show that G = {1, -1, i, -i}, where $i = \sqrt{-1}$, is an abelian group with respect to multiplication as a binary operation (2)	١.
Define filed, illustrate with example. (1)
Solve the recurrence relation $a_r - 7a_{r-1} + 12a_{r-2} = 1$. (1)
Define Plannar and non-planner graphs with examples (1	

Define filed, illustrate with example

(f)

(i) Solve the recurrence relation a

Define Plannar and non-planne (j)